Tuyệt chiêu giải phương trình bằng phương pháp hàm số
Chia sẻ bởi Hà Ngọc Bình |
Ngày 14/10/2018 |
42
Chia sẻ tài liệu: tuyệt chiêu giải phương trình bằng phương pháp hàm số thuộc Tư liệu tham khảo
Nội dung tài liệu:
A. LÝ THUYẾT
Định lí 1:Nếu hàm số luôn đb (hoặc luôn ngb) và liên tục trên D thì số nghiệm của pt trên D : không nhiều hơn một và khi và chỉ khi với mọi .
Chứng minh:
Giả sử phương trình có nghiệm , tức là . Do f đồng biến nên
* suy ra nên pt vô nghiệm
* suy ra nên pt vô nghiệm
Vậy pt có nhiều nhất là một nghiệm.
Chú ý:
* Từ định lí trên, ta có thể áp dụng vào giải phương trình như sau:
Bài toán yêu cầu giải pt: . Ta thực hiện các phép biến đổi tương đương đưa phương trình về dạng hoặc ( trong đó ) và ta chứng minh được là hàm luôn đồng biến (nghịch biến)
Nếu là pt: thì ta tìm một nghiệm, rồi chứng minh đó là nghiệm duy nhất.
Nếu là pt: ta có ngay giải phương trình này ta tìm được nghiệm.
* Ta cũng có thể áp dụng định lí trên cho bài toán chứng minh phương trình có duy nhất nghiệm.
Định lí 2: Nếu hàm số luôn đb (hoặc luôn ngb) và hàm số luôn ngb (hoặc luôn đb)và liên tục trên D thì số nghiệm trên D của pt: không nhiều hơn một.
Chứng minh:
Giả sử là một nghiệm của pt: , tức là .Ta giả sử f đồng biến còn g nghịch biến.
*Nếu suy ra dẫn đến pt vô nghiệm khi .
*Nếu suy ra dẫn đến pt vô nghiệm khi . Vậy pt có nhiều nhất một nghiệm.
Chú ý: Khi gặp pt và ta có thể biến đổi về dạng , trong đó f và g khác tính đơn điệu. Khi đó ta tìm một nghiệm của pt và chứng minh đó là nghiệm duy nhất.
Định lí 3: Cho hàm số có đạo hàm đến cấp n và pt có m nghiệm, khi đó pt có nhiều nhất là m+1 nghiệm.
Định lí 4: Nếu hàm số luôn đồng biến ( hoặc luôn nghịch biến)và liên tục trên D thì ()
B. CÁC VÍ DỤ
Ví dụ 1: Giải các phương trình sau:
.
.
.
.
Giải:
1) Với bài toán này nếu giải theo cách bình thường như bình phương hay đặt ẩn phụ sẽ gặp nhiều khó khăn. Tuy nhiên, nếu tinh ý một chút các em sẽ thấy ngay VT là một hàm đồng biến và là một nghiệm của phương trình nên theo định lí 1 ta có được là nghiệm duy nhất. Vậy ta có cách giải như sau.
ĐK:
Xét hàm số , ta có f(x) là hàm liên tục trên D và nên hàm số f(x) luôn đồng biến.
Mặt khác, ta thấy f(1)=4
*Nếu suy ra nên pt vô nghiệm
*Nếu suy ra nên pt vô nghiệm
Vậy là nghiệm duy nhất của phương trình đã cho.
Chú ý:
* vì các hàm số với là một hàm đồng biến và nếu f(x) là hàm đồng biến thì hàm ( với điều kiện căn thức tồn tại) cũng là một hàm đồng biến nên ta dẽ dàng nhận ra VT của pt là hàm đồng biến.
* Khi dự đoán nghiệm thì ta ưu tiên những giá trị của x sao cho các biểu thức dưới dấu căn nhận giá trị là số chính phương.
2) Với bài toán này cũng vậy nếu dùng phép biến đổi tương đương hay đặt ẩn phụ sẽ gặp khó khăn và theo chú ý trên ta cũng dễ dàng nhận thấy VT của pt là một hàm đồng biến và pt có nghiệm . Do đó pt này có nghiệm duy nhất ( Các giải tương tự như bài 1)
3) Với đường lối như hai bài trên thì ta khó khăn để giải quyết được bài toán này. Tuy nhiên nếu nhìn kĩ thì ta thấy các biểu thức dưới dấu căn ở hai vế có chung một mối liên hệ là và , do vậy nếu đặt thì phương trình đã cho trở thành:
, trong đó là một hàm liên tục và có :
nên f(t) luôn đồng biến. Do đó:
Vậy phương trình có nghiệm x=1, x=-1/2.
4) Nhận xét các biểu thức tham gia trong phương trình ta thấy: , do vậy nếu đặt , khi đó phương trình trở thành:
, trong đó với t>0 . Ta thấy f(t) là hàm liên tục và đồng biến, do vậy .
Ví dụ 2: Giải các phương trình sau:
.
.
Giải:
1) Ta thấy pt có hai nghiệm và . Ta chứng minh phương trình đã cho có không quá hai nghiệm.
Định lí 1:Nếu hàm số luôn đb (hoặc luôn ngb) và liên tục trên D thì số nghiệm của pt trên D : không nhiều hơn một và khi và chỉ khi với mọi .
Chứng minh:
Giả sử phương trình có nghiệm , tức là . Do f đồng biến nên
* suy ra nên pt vô nghiệm
* suy ra nên pt vô nghiệm
Vậy pt có nhiều nhất là một nghiệm.
Chú ý:
* Từ định lí trên, ta có thể áp dụng vào giải phương trình như sau:
Bài toán yêu cầu giải pt: . Ta thực hiện các phép biến đổi tương đương đưa phương trình về dạng hoặc ( trong đó ) và ta chứng minh được là hàm luôn đồng biến (nghịch biến)
Nếu là pt: thì ta tìm một nghiệm, rồi chứng minh đó là nghiệm duy nhất.
Nếu là pt: ta có ngay giải phương trình này ta tìm được nghiệm.
* Ta cũng có thể áp dụng định lí trên cho bài toán chứng minh phương trình có duy nhất nghiệm.
Định lí 2: Nếu hàm số luôn đb (hoặc luôn ngb) và hàm số luôn ngb (hoặc luôn đb)và liên tục trên D thì số nghiệm trên D của pt: không nhiều hơn một.
Chứng minh:
Giả sử là một nghiệm của pt: , tức là .Ta giả sử f đồng biến còn g nghịch biến.
*Nếu suy ra dẫn đến pt vô nghiệm khi .
*Nếu suy ra dẫn đến pt vô nghiệm khi . Vậy pt có nhiều nhất một nghiệm.
Chú ý: Khi gặp pt và ta có thể biến đổi về dạng , trong đó f và g khác tính đơn điệu. Khi đó ta tìm một nghiệm của pt và chứng minh đó là nghiệm duy nhất.
Định lí 3: Cho hàm số có đạo hàm đến cấp n và pt có m nghiệm, khi đó pt có nhiều nhất là m+1 nghiệm.
Định lí 4: Nếu hàm số luôn đồng biến ( hoặc luôn nghịch biến)và liên tục trên D thì ()
B. CÁC VÍ DỤ
Ví dụ 1: Giải các phương trình sau:
.
.
.
.
Giải:
1) Với bài toán này nếu giải theo cách bình thường như bình phương hay đặt ẩn phụ sẽ gặp nhiều khó khăn. Tuy nhiên, nếu tinh ý một chút các em sẽ thấy ngay VT là một hàm đồng biến và là một nghiệm của phương trình nên theo định lí 1 ta có được là nghiệm duy nhất. Vậy ta có cách giải như sau.
ĐK:
Xét hàm số , ta có f(x) là hàm liên tục trên D và nên hàm số f(x) luôn đồng biến.
Mặt khác, ta thấy f(1)=4
*Nếu suy ra nên pt vô nghiệm
*Nếu suy ra nên pt vô nghiệm
Vậy là nghiệm duy nhất của phương trình đã cho.
Chú ý:
* vì các hàm số với là một hàm đồng biến và nếu f(x) là hàm đồng biến thì hàm ( với điều kiện căn thức tồn tại) cũng là một hàm đồng biến nên ta dẽ dàng nhận ra VT của pt là hàm đồng biến.
* Khi dự đoán nghiệm thì ta ưu tiên những giá trị của x sao cho các biểu thức dưới dấu căn nhận giá trị là số chính phương.
2) Với bài toán này cũng vậy nếu dùng phép biến đổi tương đương hay đặt ẩn phụ sẽ gặp khó khăn và theo chú ý trên ta cũng dễ dàng nhận thấy VT của pt là một hàm đồng biến và pt có nghiệm . Do đó pt này có nghiệm duy nhất ( Các giải tương tự như bài 1)
3) Với đường lối như hai bài trên thì ta khó khăn để giải quyết được bài toán này. Tuy nhiên nếu nhìn kĩ thì ta thấy các biểu thức dưới dấu căn ở hai vế có chung một mối liên hệ là và , do vậy nếu đặt thì phương trình đã cho trở thành:
, trong đó là một hàm liên tục và có :
nên f(t) luôn đồng biến. Do đó:
Vậy phương trình có nghiệm x=1, x=-1/2.
4) Nhận xét các biểu thức tham gia trong phương trình ta thấy: , do vậy nếu đặt , khi đó phương trình trở thành:
, trong đó với t>0 . Ta thấy f(t) là hàm liên tục và đồng biến, do vậy .
Ví dụ 2: Giải các phương trình sau:
.
.
Giải:
1) Ta thấy pt có hai nghiệm và . Ta chứng minh phương trình đã cho có không quá hai nghiệm.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Hà Ngọc Bình
Dung lượng: 444,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)