Tuyển tập các chuyên đề luyện thi ĐH mới nhất
Chia sẻ bởi Nguyễn Đức Lượng |
Ngày 14/10/2018 |
51
Chia sẻ tài liệu: Tuyển tập các chuyên đề luyện thi ĐH mới nhất thuộc Tư liệu tham khảo
Nội dung tài liệu:
I. Đặt vấn đề
Trong chương trình toán ở trường phổ thông việc chứng minh bất đẳng thức là một vấn đề có thể nói là phức tạp nhất, nó rèn cho người làm toán trí thông minh, sự sáng tạo, ngoài ra còn có cả sự khéo léo, mỗi kết quả của nó là một công cụ sắc bén của toán học. Nhưng để chứng minh bất đẳng thức thì không đơn giản chút nào, nhất là đối với học sinh, các em tỏ ra lúng túng khi chọn cho mình một công cụ để chứng minh hiệu quả nhất. Đã có rất nhiều tài liệu đưa ra một số phương pháp rất tốt để chứng minh bất đẳng thức chẳng hạn:
- Phương pháp sử dụng các tính chất cơ bản của bất đẳng thức.
- Phương pháp sử dụng tam thức bậc 2.
- Phương pháp sử dụng những bất đẳng thức kinh điển.
- Phương pháp sử dụng phản chứng.
- Phương pháp sử dụng quy nạp.
- Phương pháp sử dụng đạo hàm.
- Phương pháp sử dụng hình học.
- Phương pháp sử dụng hàm lồi.
Mặc dù vậy song vẫn là chưa đủ bởi sáng tạo của mỗi người làm toán là vô hạn. Chính vì vậy trong bài viết này tôi muốn đề cập về "Một số phương pháp lượng giác để chứng minh bất đẳng thức đại số " nhằm trang bị thêm cho học sinh một số công cụ hữu hiệu để chứng minh các bất đẳng thức đại số. Phương pháp lượng giác hoá đã được một số sách của các tác giả đề cập như giáo sư Phan Đức Chính, giáo sư Phan Huy Khải, phó tiến sĩ Vũ Thế Hựu... viết. Nhưng do cấu trúc mục tiêu của các cuốn sách đó mà các tác giả đều không đi sâu vào phương pháp này hay nói cách khác là chưa thật cụ thể hoá, hệ thống hoá nó.
Là một giáo viên gần 20 năm giảng dạy với các đối tượng học sinh khá giỏi của các lớp chọn tôi đã phân chia phương pháp này thành 5 dạng bài tập. Nhằm cung cấp cho học sinh nhận ra các dấu hiệu ban đầu để thực hiện các bước lượng giác hoá bài toán chứng minh bất đẳng thức đại số, để rồi dùng các kết quả của bất đẳng thức lượng giác chứng minh bất đẳng thức đại số.
Qua thực tế giảng dạy ở các lớp chọn khối 11 trường THPT tôi nhận thấy việc phân chia dạng của tôi là hợp lý, lôgíc cụ thể, có thể nhanh chóng tìm ra phương pháp chứng minh được bất đẳng thức bằng cách áp dụng các phương pháp tư duy này của tôi.
Tôi sẽ trình bày về hiệu quả của phương pháp này đối với học sinh ở phần 4 kết quả trắc nghiệm thực tế của sáng kiến.
Các tài liệu tham khảo
1. Bất đẳng thức của giáo sư Phan Đức Chính - NXB Giáo dục 1995.
2. Các bài toán chọn lọc về bất đẳng thức 2 tập của giáo sư Phan Huy Khải - NXB Giáo dục Hà Nội 2000.
3. Phương pháp lượng giác hoá của PTS Vũ Thế Hựu - NXB Giáo dục 2002.
II. giải quyết vấn đề
1. Các kiến thức cần nắm
1.1
Trong chương trình toán ở trường phổ thông việc chứng minh bất đẳng thức là một vấn đề có thể nói là phức tạp nhất, nó rèn cho người làm toán trí thông minh, sự sáng tạo, ngoài ra còn có cả sự khéo léo, mỗi kết quả của nó là một công cụ sắc bén của toán học. Nhưng để chứng minh bất đẳng thức thì không đơn giản chút nào, nhất là đối với học sinh, các em tỏ ra lúng túng khi chọn cho mình một công cụ để chứng minh hiệu quả nhất. Đã có rất nhiều tài liệu đưa ra một số phương pháp rất tốt để chứng minh bất đẳng thức chẳng hạn:
- Phương pháp sử dụng các tính chất cơ bản của bất đẳng thức.
- Phương pháp sử dụng tam thức bậc 2.
- Phương pháp sử dụng những bất đẳng thức kinh điển.
- Phương pháp sử dụng phản chứng.
- Phương pháp sử dụng quy nạp.
- Phương pháp sử dụng đạo hàm.
- Phương pháp sử dụng hình học.
- Phương pháp sử dụng hàm lồi.
Mặc dù vậy song vẫn là chưa đủ bởi sáng tạo của mỗi người làm toán là vô hạn. Chính vì vậy trong bài viết này tôi muốn đề cập về "Một số phương pháp lượng giác để chứng minh bất đẳng thức đại số " nhằm trang bị thêm cho học sinh một số công cụ hữu hiệu để chứng minh các bất đẳng thức đại số. Phương pháp lượng giác hoá đã được một số sách của các tác giả đề cập như giáo sư Phan Đức Chính, giáo sư Phan Huy Khải, phó tiến sĩ Vũ Thế Hựu... viết. Nhưng do cấu trúc mục tiêu của các cuốn sách đó mà các tác giả đều không đi sâu vào phương pháp này hay nói cách khác là chưa thật cụ thể hoá, hệ thống hoá nó.
Là một giáo viên gần 20 năm giảng dạy với các đối tượng học sinh khá giỏi của các lớp chọn tôi đã phân chia phương pháp này thành 5 dạng bài tập. Nhằm cung cấp cho học sinh nhận ra các dấu hiệu ban đầu để thực hiện các bước lượng giác hoá bài toán chứng minh bất đẳng thức đại số, để rồi dùng các kết quả của bất đẳng thức lượng giác chứng minh bất đẳng thức đại số.
Qua thực tế giảng dạy ở các lớp chọn khối 11 trường THPT tôi nhận thấy việc phân chia dạng của tôi là hợp lý, lôgíc cụ thể, có thể nhanh chóng tìm ra phương pháp chứng minh được bất đẳng thức bằng cách áp dụng các phương pháp tư duy này của tôi.
Tôi sẽ trình bày về hiệu quả của phương pháp này đối với học sinh ở phần 4 kết quả trắc nghiệm thực tế của sáng kiến.
Các tài liệu tham khảo
1. Bất đẳng thức của giáo sư Phan Đức Chính - NXB Giáo dục 1995.
2. Các bài toán chọn lọc về bất đẳng thức 2 tập của giáo sư Phan Huy Khải - NXB Giáo dục Hà Nội 2000.
3. Phương pháp lượng giác hoá của PTS Vũ Thế Hựu - NXB Giáo dục 2002.
II. giải quyết vấn đề
1. Các kiến thức cần nắm
1.1
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Đức Lượng
Dung lượng: 535,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)