Suy nghĩ về hệ Tiên đề Euclide
Chia sẻ bởi Phạm Huy Hoạt |
Ngày 14/10/2018 |
30
Chia sẻ tài liệu: suy nghĩ về hệ Tiên đề Euclide thuộc Tư liệu tham khảo
Nội dung tài liệu:
Suy nghĩ về những Tiên đề của Euclid
và Hình tam giác của Phương Ðông
Giáo Sư Tiến sĩ Nguyễn Xuân Vinh có cách giảng bài về phương pháp luận trong toán học rất lí thú, biến những lí luận” khó nhai” thành nhữn câu chuyện, cuộc trao đổi nhẹ nhàng nhưng bổ ích, làm cho chúng ta yêu toán học hơn. Quan trong nhất khi tiếp cận toán học cũng như các khoa học khác, đó là Phương pháp tư duy. Vì thế với các bạn HS mới làm quen với hình học (cả các GV dạy toán cho HS) nên suy nghĩ về bài viết này của GS Vinh.
******
Chúng ta chắc nhiều người đã đọc những chuyện võ hiệp và đã được biết có một thời trong võ lâm có năm bậc tài năng tới mức thượng thừa. Năm vị lãnh tụ võ lâm ấy là Hoàng Dược Sư, Âu Dương Phong, Ðoàn Nam Ðế, Hồng Thất Công và Vương Trùng Dương mỗi vị trấn một phương, uy thế ngất trời. Một lần họ họp với nhau suốt bẩy ngày và bẩy đêm trên đỉnh núi Hoa Sơn để bàn luận võ công, tuy không thực sự quần thảo nhưng dùng lý thuyết và biểu diễn tranh tài cao thấp. Chung cuộc họ đi đến kết luận là người nào cũng đã đến tuyệt đỉnh môn phái võ của mình. Âu Dương Phong có môn Hàm Mô Công thật là ác độc, Hoàng Dược Sư là một nhà thông thái võ công huyền ảo, kỳ bí, có phần chính, có phần tà, vị Ðế Vương miền Vân Nam họ Ðoàn được thừa hưởng môn võ Nhất Dương Chỉ truyền đời, chỉ dùng ngón tay mà tạo ra những đường kiếm linh hoạt, ảo diệu. Ngoài ra Hồng Thất Công là vị bang chủ Cái bang, tính tình hào hiệp, trọng nghĩa khinh tài, môn Giáng Long có mười tám thế đánh bằng tay sức mạnh ví như có thể di sơn, đảo hải, lại thêm môn võ đánh gậy trúc gọi nôm na là Ðả Cẩu Bổng Pháp tuy nhẹ nhàng nhưng lại huyền diệu lợi hại khôn lường. Tuy không tôn một ai làm minh chủ của võ lâm nhưng các vị lãnh tụ đều phải nhận là giáo chủ Vương Trùng Dương, xưa nay vẫn ẩn cư ở núi Chung Nam, võ nghệ, kiến thức tuyệt luân, tính tình lại từ hòa nhân ái đáng giữ ngôi vị ở trung ương. Từ đó truyền bá ra Võ Lâm theo phương vị là Ðông Tà, Tây Ðộc, Nam Ðế, Bắc Cái, Trung Thần Thông, ý nói là Hoàng Dược Sư giữ ngôi vị chúa đảo ngoài Ðông Hải, trong khi đó Âu Dương Phong hùng cứ miền Tây Nguyên, Ðoàn Vương Gia là thủ lãnh suốt miền Nam và Hồng bang chủ trấn ngự toàn phía Bắc. Ở trung ương thì ngôi vị phải nhường cho con người võ nghệ siêu phàm là Vương Trùng Dương chân nhân. Tôi nghĩ rằng trong hình học, lựa chọn ra một hình có tính chất tuyệt luân huyền diệu cũng khó như cuộc luận kiếm trên đỉnh Hoa Sơn. Vì vậy tôi tưởng tượng ra đây một trại Hè tôi và một số bạn trẻ đã qua mấy ngày đêm thảo luận về những nét hay đẹp của một số hình trong toán học và giờ đây duyệt lại xem hình nào đáng giữ ngôi vị trung ương. Ðể buổi hội thảo có trật tự, ta tạm chia nhiệm vụ là đã có bốn nhóm trại sinh, mỗi nhóm đã nghiên cứu và chọn ra được một hình như là cao thủ võ lâm để dự cuộc tuyển chọn và hiện nay 4 nhóm này đã ngồi chung quanh theo bốn phương vị Ðông, Tây, Nam và Bắc. Số người còn lại, hoặc chưa có ý kiến, hoặc chưa đưa ra hình dự cuộc vì còn muốn giữ bí mật nay ngồi ở phần giữa của hội trường. Ngồi ở Ðông vị là một nhóm trông có vẻ hăng hái hơn cả vì muốn được xuất quân trước nhất. Một bạn đại diện đứng lên và đưa đề nghị thật giản dị:
“Hình đẹp nhất phải là hình tam giác được tạo ra bởi ba điểm A, B và C không thẳng hàng nối với nhau bằng những đoạn thẳng và trong tất cả các hình tam giác vẽ được trong thế gian, hình tuyệt mỹ là hình tam giác có ba cạnh đều nhau.”
đó có nhiều bạn trong nhóm Ðông mỗi người đứng lên nói một câu biện minh cho sự chọn lựa của nhóm này. Tôi ghi lại đây những ý chính: Nếu chỉ có hai điểm thì không vẽ ra được một hình. Phải có ít nhất là ba điểm. Vậy tam giác là hình giản dị nhất, thiên nhiên nhất và dĩ nhiên là đẹp nhất. Làm một cái bàn chỉ có hai chân thì không thành cái bàn. Phải cần có ba chân, thành ra ba điểm đặt, và ba điểm là vững vàng nhất. Dùng bốn điểm có thể thành khập khễnh. Tam giác ba cạnh đều là tam giác cân xứng nhất vì có ba cạnh bằng nhau và ba góc đỉnh cũng bằng nhau. Ngoài ra, trên một mặt phẳng, muốn ghép những hình đều cạnh mà không để chừa ra
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Huy Hoạt
Dung lượng: 119,00KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)