SKKN đỉnh cao (Khai thác...)
Chia sẻ bởi Nguyễn Văn Tuấn |
Ngày 14/10/2018 |
26
Chia sẻ tài liệu: SKKN đỉnh cao (Khai thác...) thuộc Tư liệu tham khảo
Nội dung tài liệu:
PHẦN THỨ NHẤT.
MỞ ĐẦU
I. LÝ DO CHỌN ĐỀ TÀI:
Hiện nay, sự nghiệp giáo dục và đào tạo đang đổi mới trước yêu cầu phát triển kinh tế - xã hội theo hướng công nghiệp hoá và hiện đại hoá đất nước. Hướng đổi mới của giáo dục và đào tạo là đào tạo con người năng động, sáng tạo, chủ động trong học tập, dễ thích ứng với cuộc sống và lao động. Bên cạnh việc dạy cho học sinh (HS) nắm vững các nội dung cơ bản về kiến thức, giáo viên (GV) còn phải dạy cho HS biết suy nghĩ, tư duy sáng tạo, biết tạo cho HS có nhu cầu nhận thức trong quá trình học tập. Từ nhu cầu nhận thức sẽ hình thành động cơ thúc đẩy quá trình học tập tự giác, tích cực và tự lực trong học tập để chiếm lĩnh tri thức. Những thành quả đạt được sẽ tạo niềm hứng thú, say mê học tập, nhờ đó mà những kiến thức sẽ trở thành “tài sản riêng” của các em.
Tri thức nhân loại nói chung và kiến thức toán học nói riêng là vô tận. Để chiếm lĩnh, nắm bắt kiến thức toán học một cách hiệu quả, tích cực và tự nhiên thì chúng ta cần phải có phương pháp nghiên cứu, học tập đúng đắn, phù hợp. Một trong những phương pháp tích cực đó là khám phá, tìm tòi từ những kết quả quen thuộc hoặc đơn giản của các bài toán đã có. Trong quá trình dạy học toán nói chung, người dạy và người học cần phải tạo ra cho mình một thói quen là: Sau khi đã tìm được lời giải bài toán, dù là đơn giản hay phức tạp, cần tiếp tục suy nghĩ, lật lại vấn đề để tìm kết quả mới hơn. Tìm được cái mới hơn rồi, lại tiếp tục đi tìm cái mới hơn nữa hoặc đi tìm mối liên hệ giữa các vấn đề, . . . cứ như thế chúng ta sẽ tìm ra được những kết quả thú vị.
Việc khai thác, phát triển một bài toán là không xa lạ với người dạy và học toán. Tuy nhiên, khai thác một bài toán quỹ tích hình học thì chúng ta còn ít được tham khảo. Với các lí do trên, tôi xin trình bày đề tài “Khai thác kết quả một bài toán hình học” hi vọng góp phần vào giải quyết vấn đề trên.
II. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU:
1. Đối tượng nghiên cứu: HS lớp 8 THCS.
2. Phạm vi nghiên cứu: Chương trình hình học lớp 8 THCS.
III. PHƯƠNG PHÁP NGHIÊN CỨU
- Tham khảo tài liệu sách giáo khoa, sách tham khảo, tạp chí liên quan, khai thác thông tin trên mạng.
- Phân tích, tổng kết kinh nghiệm.
- Kiểm tra kết quả giảng dạy, điều tra trực tiếp thông qua các giờ dạy.
PHẦN THỨ HAI.
NỘI DUNG
I. CƠ SỞ LÝ LUẬN CỦA VẤN ĐỀ
Đặc điểm của lứa tuổi HS THCS là muốn vươn lên làm người lớn, muốn tự mình khám phá, tìm hiểu trong quá trình nhận thức. Các em có khả năng điều chỉnh hoạt động học tập, sẵn sàng tham gia các hoạt động học tập khác nhau nhưng cần phải có sự hướng dẫn, điều hành một cách khoa học và nghệ thuật của thầy, cô giáo. Hình thành và phát triển tư duy tích cực, độc lập, sáng tạo cho HS là một quá trình lâu dài.
*Tư duy tích cực, độc lập sáng tạo của HS được thể hiện ở một số mặt sau:
- Biết tìm ra phương pháp nghiên cứu giải quyết vấn đề, khắc phục các tư tưởng rập khuôn, máy móc.
- Có kĩ năng phát hiện những kiến thức liên quan với nhau, nhìn nhận một vấn đề ở nhiều khía cạnh.
- Có óc hoài nghi, luôn đặt ra các câu hỏi: Tại sao? Do đâu? Liệu có cách nào khác nữa không? Các trường hợp khác thì kết luận còn đúng hay không? …
- Tính độc lập còn thể hiện ở chỗ biết nhìn nhận vấn đề và giải quyết vấn đề.
- Có khả năng khai thác một vấn đề mới từ những vấn đề đã quen biết.
*Khai thác, phát triển kết quả một bài toán nói chung có nhiều hướng như:
- Nhìn lại toàn bộ các bước giải. Rút ra phương pháp giải một loại toán nào đó.
- Tìm thêm các cách giải khác.
- Khai thác thêm các kết quả có thể có được của bài toán, đề xuất các bài toán mới.
- Rút ra các kinh nghiệm giải toán.
- Tìm mối liên quan giữa bài toán đã có với bài toán khác.
II. THỰC TRẠNG CỦA VẤN ĐỀ
Qua quá trình công tác giảng dạy, tôi thấy:
- Đa số HS, sau khi tìm được một lời giải đúng cho bài toán thì các em hài lòng và
MỞ ĐẦU
I. LÝ DO CHỌN ĐỀ TÀI:
Hiện nay, sự nghiệp giáo dục và đào tạo đang đổi mới trước yêu cầu phát triển kinh tế - xã hội theo hướng công nghiệp hoá và hiện đại hoá đất nước. Hướng đổi mới của giáo dục và đào tạo là đào tạo con người năng động, sáng tạo, chủ động trong học tập, dễ thích ứng với cuộc sống và lao động. Bên cạnh việc dạy cho học sinh (HS) nắm vững các nội dung cơ bản về kiến thức, giáo viên (GV) còn phải dạy cho HS biết suy nghĩ, tư duy sáng tạo, biết tạo cho HS có nhu cầu nhận thức trong quá trình học tập. Từ nhu cầu nhận thức sẽ hình thành động cơ thúc đẩy quá trình học tập tự giác, tích cực và tự lực trong học tập để chiếm lĩnh tri thức. Những thành quả đạt được sẽ tạo niềm hứng thú, say mê học tập, nhờ đó mà những kiến thức sẽ trở thành “tài sản riêng” của các em.
Tri thức nhân loại nói chung và kiến thức toán học nói riêng là vô tận. Để chiếm lĩnh, nắm bắt kiến thức toán học một cách hiệu quả, tích cực và tự nhiên thì chúng ta cần phải có phương pháp nghiên cứu, học tập đúng đắn, phù hợp. Một trong những phương pháp tích cực đó là khám phá, tìm tòi từ những kết quả quen thuộc hoặc đơn giản của các bài toán đã có. Trong quá trình dạy học toán nói chung, người dạy và người học cần phải tạo ra cho mình một thói quen là: Sau khi đã tìm được lời giải bài toán, dù là đơn giản hay phức tạp, cần tiếp tục suy nghĩ, lật lại vấn đề để tìm kết quả mới hơn. Tìm được cái mới hơn rồi, lại tiếp tục đi tìm cái mới hơn nữa hoặc đi tìm mối liên hệ giữa các vấn đề, . . . cứ như thế chúng ta sẽ tìm ra được những kết quả thú vị.
Việc khai thác, phát triển một bài toán là không xa lạ với người dạy và học toán. Tuy nhiên, khai thác một bài toán quỹ tích hình học thì chúng ta còn ít được tham khảo. Với các lí do trên, tôi xin trình bày đề tài “Khai thác kết quả một bài toán hình học” hi vọng góp phần vào giải quyết vấn đề trên.
II. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU:
1. Đối tượng nghiên cứu: HS lớp 8 THCS.
2. Phạm vi nghiên cứu: Chương trình hình học lớp 8 THCS.
III. PHƯƠNG PHÁP NGHIÊN CỨU
- Tham khảo tài liệu sách giáo khoa, sách tham khảo, tạp chí liên quan, khai thác thông tin trên mạng.
- Phân tích, tổng kết kinh nghiệm.
- Kiểm tra kết quả giảng dạy, điều tra trực tiếp thông qua các giờ dạy.
PHẦN THỨ HAI.
NỘI DUNG
I. CƠ SỞ LÝ LUẬN CỦA VẤN ĐỀ
Đặc điểm của lứa tuổi HS THCS là muốn vươn lên làm người lớn, muốn tự mình khám phá, tìm hiểu trong quá trình nhận thức. Các em có khả năng điều chỉnh hoạt động học tập, sẵn sàng tham gia các hoạt động học tập khác nhau nhưng cần phải có sự hướng dẫn, điều hành một cách khoa học và nghệ thuật của thầy, cô giáo. Hình thành và phát triển tư duy tích cực, độc lập, sáng tạo cho HS là một quá trình lâu dài.
*Tư duy tích cực, độc lập sáng tạo của HS được thể hiện ở một số mặt sau:
- Biết tìm ra phương pháp nghiên cứu giải quyết vấn đề, khắc phục các tư tưởng rập khuôn, máy móc.
- Có kĩ năng phát hiện những kiến thức liên quan với nhau, nhìn nhận một vấn đề ở nhiều khía cạnh.
- Có óc hoài nghi, luôn đặt ra các câu hỏi: Tại sao? Do đâu? Liệu có cách nào khác nữa không? Các trường hợp khác thì kết luận còn đúng hay không? …
- Tính độc lập còn thể hiện ở chỗ biết nhìn nhận vấn đề và giải quyết vấn đề.
- Có khả năng khai thác một vấn đề mới từ những vấn đề đã quen biết.
*Khai thác, phát triển kết quả một bài toán nói chung có nhiều hướng như:
- Nhìn lại toàn bộ các bước giải. Rút ra phương pháp giải một loại toán nào đó.
- Tìm thêm các cách giải khác.
- Khai thác thêm các kết quả có thể có được của bài toán, đề xuất các bài toán mới.
- Rút ra các kinh nghiệm giải toán.
- Tìm mối liên quan giữa bài toán đã có với bài toán khác.
II. THỰC TRẠNG CỦA VẤN ĐỀ
Qua quá trình công tác giảng dạy, tôi thấy:
- Đa số HS, sau khi tìm được một lời giải đúng cho bài toán thì các em hài lòng và
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Văn Tuấn
Dung lượng: 246,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)