Ôn thi học sinh giỏi (Phân tich đa thức thành nhân tử)
Chia sẻ bởi Lê Minh Hiếu |
Ngày 14/10/2018 |
58
Chia sẻ tài liệu: Ôn thi học sinh giỏi (Phân tich đa thức thành nhân tử) thuộc Tư liệu tham khảo
Nội dung tài liệu:
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
=======================
I/ LÍ :
1/ Các phương pháp đã học lớp 8: (Đặt nhân tử chung, Hằng đẳng thức, Nhóm hạng tử)
2/ Phương pháp tách hạng tử:
a/ Phân tích đa thức ax2 + bx + c ta tách bx thành b1x + b2x sao cho b1b2 = ac.
+ Tìm tích ac
+Phân tích ac ra tích 2 số nguyên b1, b2 bất kỳ
+ Chọn cặp thừa số sao cho: b1 + b2 = ac.
Ví dụ: Phân tích 3x2 – 8x + 4 có a = 3; b = -8; c = 4
ac = 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6) ta chọn cặp số -2 và -6 vì (-2) + (-6) = (-8)
Nên: 3x2 – 8x + 4 = 3x2 – 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)
Lưu ý: Nếu a = 1 thì x2 + bx + c = (x + b1)(x + b2) với b1 + b2 = b và b1.b2 = c
b/ Tách hạng tử để xuất hiện hiệu của 2 bình phương:
Ví dụ: 4x2 – 4x – 3 = 4x2 – 4x + 1 – 4 = (2x – 1)2 – 22 = (2x – 1 – 2)(2x – 1 + 2) = (2x – 3)(2x + 1)
c/ Đa thức từ bậc 3 trở lên ta thường sử dung theo cách tìm nghiệm của đa thức : “a gọi là nghiệm của đa thức f(x) nếu f(a) = 0” và khi a là nghiệm của đa thức f(x) thì f(x) chứa thừa số x – a; tức là ta tách các hạng tử sao cho cho có thừa số chung x – a.
+ Nghiệm nguyên của đa thức nếu có phải là ước của hạng tử tự do (hạng tử không chứa x)
+ Trường hợp đặc biệt nếu f(x) = anxn + an-1xn-1 + … + ax + a
* có tổng các hệ số: an + an-n + … + a = 0 thì x = 1 là nghiệm của f(x)
* Tổng hệ số cùa các số hạng bậc chẵn bằng tổng hệ số của các số hạng bậc lẻ thì x = -1 là nghiệm của f(x).
Ví dụ: 4x3 – 13x2 + 9x – 18
Ta thấy f(3) = 0 nên x = 3 là nghiệp của đa thức đã cho. Hay đa thức trên chứa thừ số x – 3. Do đó ta có cách tách như sau:
4x3 – 13x2 + 9x – 18 = 4x3 – 12x2 – x2 + 3x + 6x – 18 = 4x2(x – 3) – x(x – 3) + 6(x – 3)
= (x – 3)(4x2 – x + 6)
3/ Phương pháp thêm bớt cùng một số hạng:
a/ Thêm bớt để xuất hiện hiệu của 2 bình phương:
Ví dụ: x4 + 81 = (2x2)2 + 92 + 36x2 – 36x2 = (2x2 + 9)2 – (6x)2 = (2x2 – 6x +9)(2x2 + 6x + 9)
b/ Thên bớt cùng một số hạng đề xuất hiện thừa số chung:
Ví dụ: x7 + x2 + 1 = x7 – x + x2 + x + 1 = x(x6 – 1) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + (x2 + x + 1) =
= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1] =
= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)
* Chú ý: Các đa thức dạng: x3m+2 + x3n+1 + 1 luôn chứa thừa số x2 + x + 1
4/ Phương pháp đổi biến:
Ví dụ: Phân tích: x(x + 4)(x + 6)(x + 10) + 128 =
= (x2 + 10x)(x2 + 10x + 24) + 128
Đặt y = x2 +10x + 12 thì biểu thức đã cho trở thành :
(y – 12)(y + 12) + 128 = y2 – 122 + 128 = y2 – 16 = (y – 4)(y + 4)
=======================
I/ LÍ :
1/ Các phương pháp đã học lớp 8: (Đặt nhân tử chung, Hằng đẳng thức, Nhóm hạng tử)
2/ Phương pháp tách hạng tử:
a/ Phân tích đa thức ax2 + bx + c ta tách bx thành b1x + b2x sao cho b1b2 = ac.
+ Tìm tích ac
+Phân tích ac ra tích 2 số nguyên b1, b2 bất kỳ
+ Chọn cặp thừa số sao cho: b1 + b2 = ac.
Ví dụ: Phân tích 3x2 – 8x + 4 có a = 3; b = -8; c = 4
ac = 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6) ta chọn cặp số -2 và -6 vì (-2) + (-6) = (-8)
Nên: 3x2 – 8x + 4 = 3x2 – 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)
Lưu ý: Nếu a = 1 thì x2 + bx + c = (x + b1)(x + b2) với b1 + b2 = b và b1.b2 = c
b/ Tách hạng tử để xuất hiện hiệu của 2 bình phương:
Ví dụ: 4x2 – 4x – 3 = 4x2 – 4x + 1 – 4 = (2x – 1)2 – 22 = (2x – 1 – 2)(2x – 1 + 2) = (2x – 3)(2x + 1)
c/ Đa thức từ bậc 3 trở lên ta thường sử dung theo cách tìm nghiệm của đa thức : “a gọi là nghiệm của đa thức f(x) nếu f(a) = 0” và khi a là nghiệm của đa thức f(x) thì f(x) chứa thừa số x – a; tức là ta tách các hạng tử sao cho cho có thừa số chung x – a.
+ Nghiệm nguyên của đa thức nếu có phải là ước của hạng tử tự do (hạng tử không chứa x)
+ Trường hợp đặc biệt nếu f(x) = anxn + an-1xn-1 + … + ax + a
* có tổng các hệ số: an + an-n + … + a = 0 thì x = 1 là nghiệm của f(x)
* Tổng hệ số cùa các số hạng bậc chẵn bằng tổng hệ số của các số hạng bậc lẻ thì x = -1 là nghiệm của f(x).
Ví dụ: 4x3 – 13x2 + 9x – 18
Ta thấy f(3) = 0 nên x = 3 là nghiệp của đa thức đã cho. Hay đa thức trên chứa thừ số x – 3. Do đó ta có cách tách như sau:
4x3 – 13x2 + 9x – 18 = 4x3 – 12x2 – x2 + 3x + 6x – 18 = 4x2(x – 3) – x(x – 3) + 6(x – 3)
= (x – 3)(4x2 – x + 6)
3/ Phương pháp thêm bớt cùng một số hạng:
a/ Thêm bớt để xuất hiện hiệu của 2 bình phương:
Ví dụ: x4 + 81 = (2x2)2 + 92 + 36x2 – 36x2 = (2x2 + 9)2 – (6x)2 = (2x2 – 6x +9)(2x2 + 6x + 9)
b/ Thên bớt cùng một số hạng đề xuất hiện thừa số chung:
Ví dụ: x7 + x2 + 1 = x7 – x + x2 + x + 1 = x(x6 – 1) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + (x2 + x + 1) =
= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1] =
= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)
* Chú ý: Các đa thức dạng: x3m+2 + x3n+1 + 1 luôn chứa thừa số x2 + x + 1
4/ Phương pháp đổi biến:
Ví dụ: Phân tích: x(x + 4)(x + 6)(x + 10) + 128 =
= (x2 + 10x)(x2 + 10x + 24) + 128
Đặt y = x2 +10x + 12 thì biểu thức đã cho trở thành :
(y – 12)(y + 12) + 128 = y2 – 122 + 128 = y2 – 16 = (y – 4)(y + 4)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Minh Hiếu
Dung lượng: 38,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)