Đề thi Tuyển sinh vào lớp 10 THPT Tỉnh Thanh Hóa

Chia sẻ bởi Lê Văn Sinh | Ngày 14/10/2018 | 92

Chia sẻ tài liệu: Đề thi Tuyển sinh vào lớp 10 THPT Tỉnh Thanh Hóa thuộc Tư liệu tham khảo

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
THANH HÓA NĂM HỌC 2009-2010
Đề B Môn thi : Toán
Thời gian làm bài: 120 phút
9/7/2015
Bài 1 (1,5 điểm)
Cho phương trình: x2 – 4x + n = 0 (1) với n là tham số.
1.Giải phương trình (1) khi n = 3.
2. Tìm n để phương trình (1) có nghiệm.
Bài 2 (1,5 điểm)
Giải hệ phương trình: 
Bài 3 (2,5 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và điểm B(0;1)
1. Viết phương trình đường thẳng (d) đi qua điểm B(0;1) và có hệ số k.
2. Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt E và F với mọi k.
3. Gọi hoành độ của E và F lần lượt là x1 và x2. Chứng minh rằng x1 .x2 = - 1, từ đó suy ra tam giác EOF là tam giác vuông.
Bài 4 (3,5 điểm)
Cho nửa đương tròn tâm O đường kính AB = 2R. Trên tia đối của tia BA lấy điểm G (khác với điểm B) . Từ các điểm G; A; B kẻ các tiếp tuyến với đường tròn (O) . Tiếp tuyến kẻ từ G cắt hai tiếp tuyến kẻ từ A và B lần lượt tại C và D.
1. Gọi N là tiếp điểm của tiếp tuyến kẻ từ G tới nửa đường tròn (O). Chứng minh tứ giác BDNO nội tiếp được.
2. Chứng minh tam giác BGD đồng dạng với tam giác AGC, từ đó suy ra .
3. Đặt  Tính độ dài các đoạn thẳng AC và BD theo R và (. Chứng tỏ rằng tích AC.BD chỉ phụ thuộc R, không phụ thuộc (.
Bài 5 (1,0 điểm)
Cho số thực m, n, p thỏa mãn : .
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức : B = m + n + p.

……………………………. Hết …………………………….







ĐÁP ÁN
Bài 1 (1,5 điểm)
Cho phương trình: x2 – 4x + n = 0 (1) với n là tham số.
1.Giải phương trình (1) khi n = 3.
x2 – 4x + 3 = 0
Ta a + b + c = 1 + (-4) + 3 = 0
Pt có nghiệm x1 = 1; x2 = 3
2. Tìm n để phương trình (1) có nghiệm.
(’ = 4 – n ( 0 ( n ( 4
Bài 2 (1,5 điểm)
Giải hệ phương trình: ( 2x + 4y = 10
2x + y = 7
( 3y = 3 y = 1 y = 1
( (
2x + y = 7 2x + 1 = 7 2x = 6
HPT có nghiệm: 
Bài 3 (2,5 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và điểm B(0;1)
Viết phương trình đường thẳng (d) đi qua điểm B(0;1) và có hệ số k.
Gọi phương trình đường thẳng (d) cần tìm có dạng y = ax + b ( a0)
Phương trình đường thẳng(d) có hệ số góc k có dạng
y= kx + b
Vì (d) đi qua B(0;1) nên ta có 1 = 0k + b
Suy ra k = 1
Vởy phương trình đường thẳng cần tìm có dạng
y = kx + 1
2. Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt E và F với mọi k.
Phương trình hoành độ: x2 – kx – 1 = 0
( = k2 + 4 > 0 với ( k ( PT có hai nghiệm phân biệt ( đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt E và F với mọi k.
3. Gọi hoành độ của E và F lần lượt là x1 và x2. Chứng minh rằng x1 .x2 = -1, từ đó suy ra tam giác EOF là tam giác vuông.
Tọa độ điểm E(x1; x12); F((x2; x22)
( PT đường thẳng OE : y = x1 . x
và PT đường thẳng OF : y = x2
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Lê Văn Sinh
Dung lượng: 73,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)