ĐỀ THI TOÁN VÀO 10 – THPT HÀ NỘI 2007-2008
Chia sẻ bởi Tôn Nữ Bích Vân |
Ngày 14/10/2018 |
85
Chia sẻ tài liệu: ĐỀ THI TOÁN VÀO 10 – THPT HÀ NỘI 2007-2008 thuộc Tư liệu tham khảo
Nội dung tài liệu:
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT [2007 – 2008] – HÀ NỘI
Ngày 20 – 6 – 2007 – Thời gian 120 phút
Bài 1 ( 2,5 điểm)
Cho biểu thức:
1/ Rút gọn biểu thức P
2/ Tìm x để
Bài 2 ( 2,5 điểm)
Giải bài toán sau bằng cách lập phương trình:
Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B trở về A người đó tăng vận tốc lên 4 km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B.
Bài 3 ( 1 điểm)
Cho phương trình x2+bx+c=0
1/ Giải phương trình khi b = -3và c =2.
2/ Tìm b, c để phương trình đã cho có hai nghiệm phân biệt và tích của chúng bằng 1.
Bài 4 ( 3,5 điểm)
Cho đường tròn (O; R) tiếp xúc với đường thẳng d tại A. Trên d lấy điểm H không trùng với điểm A và AH < R. Qua H kẻ đường thẳng vuông góc với d, đường thẳng này cắt đường tròn tai hai điểm E và B ( E nằm giữa B và H ).
1/ Chứng minh và đồng dạng với
2/ Lấy điểm C trên d sao cho H là trung điểm của đoạn thẳng AC, đường thẳng CE cắt AB tại K. Chứng minh AHEK là tứ giác nội tiếp.
3/ Xác định vị trí điểm H để .
Bài 5 ( 0,5 điểm)
Cho đường thẳng y= (m-1)x+2
Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng đó là lớn nhất.
Ngày 20 – 6 – 2007 – Thời gian 120 phút
Bài 1 ( 2,5 điểm)
Cho biểu thức:
1/ Rút gọn biểu thức P
2/ Tìm x để
Bài 2 ( 2,5 điểm)
Giải bài toán sau bằng cách lập phương trình:
Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B trở về A người đó tăng vận tốc lên 4 km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B.
Bài 3 ( 1 điểm)
Cho phương trình x2+bx+c=0
1/ Giải phương trình khi b = -3và c =2.
2/ Tìm b, c để phương trình đã cho có hai nghiệm phân biệt và tích của chúng bằng 1.
Bài 4 ( 3,5 điểm)
Cho đường tròn (O; R) tiếp xúc với đường thẳng d tại A. Trên d lấy điểm H không trùng với điểm A và AH < R. Qua H kẻ đường thẳng vuông góc với d, đường thẳng này cắt đường tròn tai hai điểm E và B ( E nằm giữa B và H ).
1/ Chứng minh và đồng dạng với
2/ Lấy điểm C trên d sao cho H là trung điểm của đoạn thẳng AC, đường thẳng CE cắt AB tại K. Chứng minh AHEK là tứ giác nội tiếp.
3/ Xác định vị trí điểm H để .
Bài 5 ( 0,5 điểm)
Cho đường thẳng y= (m-1)x+2
Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng đó là lớn nhất.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Tôn Nữ Bích Vân
Dung lượng: 26,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)