Đề thi HSG máy tính BT 12 2010 (có HD) -6
Chia sẻ bởi Vũ Ngọc Vinh |
Ngày 14/10/2018 |
30
Chia sẻ tài liệu: Đề thi HSG máy tính BT 12 2010 (có HD) -6 thuộc Tư liệu tham khảo
Nội dung tài liệu:
ĐỀ THI CHỌN HỌC SINH GIỎI
GIẢI TOÁN TRÊN MÁY TÍNH CASIO
NĂM HỌC 2009 – 2010 -Lớp 12 THPT
( Làm tròn 4 chữ số thập phân )
Bài 1: Tìm các số nguyên dương x và y sao cho x2 + 2y2 = 2009.
Bài 2: Cho hàm số .Tính f(f(…f(f(2))…)) (có 2009 chữ f).
Bài 3: Tìm điểm M trên đồ thị của hàm số cách đều hai trục toạ độ.
Bài 4: Tìm số tự nhiên nhỏ nhất sao cho khi bình phương số đó ta được số tự nhiên có dạng
.
Bài 5: Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e.
Biết rằng P(1) = 8, P(2) = 18, P(3) = 32, P(4) = 50, P(5) = 72. Tính P(30).
Bài 6: Tìm các nghiệm gần đúng (độ, phút, giây) của phương trình:
.
Bài 7: Cho dãy số (un) thoả mãn điều kiện sau:
Hãy tính tổng 22 số hạng đầu tiên của dãy số (un).
Bài 8: Cho điểm A nằm tuỳ ý trên elíp (E): và điểm B nằm tuỳ ý trên đường
thẳng 5x – 7y – 35 = 0.Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB.
Bài 9: Ông A gửi tiết kiệm 100 triệu đồng với lãi suất không đổi r = 0,7% một tháng. Mỗi
tháng ông A phải rút ra 1 triệu đồng để trả chi phí sinh hoạt.
Hỏi số tiền ông A có được sau 1 năm là bao nhiêu?
Hỏi sau bao nhiêu tháng (kể từ khi gửi tiền) thì ông A không thể rút ra được số tiền lớn hơn 90 triệu đồng?
Bài 10: Cho tứ diện ABCD có AB = 1cm, AC = 2cm, AD=5cm. Và
.
Tính giá trị gần đúng thể tích của khối tứ diện ABCD.
CÁCH GIẢI, ĐÁP SỐ VÀ HƯỚNG DẪN CHO ĐIỂM
Bài
Cách giải
Đáp số
Điểm
1
x = 21
y = 28
2,0
2
Mode Mode Mode Mode 2 (sử dụng đơn vị radian)
Bấm dấu = nhiều lần (17 lần) cho đến khi được một số không đổi 0.876726215
0.8767
2,0
3
M(x:y) ( cách đều hai trục toạ độ, tức là
Dùng lệnh SHIFT SOLVE (gán X=1 và gán X = 0.5)
M1(0,7024;0,7024)
M2(-0,4127;0,4127)
2,0
4
Bước 1: Tìm 4 chữ số tận cùng của số cần tìm x sao cho .
Bước 2: Chèn vào giữa 2009đầu và 2009 cuối các số 0 rồi các số 9(số các số 0 bằng số các số 9)
Bước 3: Thử lại chỉ có 448253 thoả mãn bài toán
Có 6 số: 3253,8253,1747,
2997,6747,7997.
Kết quả: 448253
2,0
5
P(1) = 8 =2.(1+1)2, P(2) =18 = 2(2+1)2, P(3) = 32 = 2(3+1)2,
P(4) = 50 = 2(4+1)2, P(5) = 72 = 2(5+1)2
Suy ra P(x) = (x-1)(x-2)(x-3)(x-4)(x-5) + 2(x+1)2
P(30) = 14252522
2,0
6
Đặt thì
Khi t = 1 thì
Khi t = -3 thì
Vậy phương trình đã cho có các nghiệm là
2,0
7
2,0
8
Vì đường thẳng (:5x – 7y – 35 = 0 cắt tia Ox và tia Oy’ nên điểm A thuộc góc phần tư thứ tư.
Gỉa sử
AB ngắn nhất khi B là hình chiếu vuông góc của A lên ( nên
Xét hàm số
Ta có
(vì x >0)
SHIFT d/dx
f(0) = -14, f(80/29) = -6, f(4) = -15 nên
Do đó AB nhỏ nhất bằng
GIẢI TOÁN TRÊN MÁY TÍNH CASIO
NĂM HỌC 2009 – 2010 -Lớp 12 THPT
( Làm tròn 4 chữ số thập phân )
Bài 1: Tìm các số nguyên dương x và y sao cho x2 + 2y2 = 2009.
Bài 2: Cho hàm số .Tính f(f(…f(f(2))…)) (có 2009 chữ f).
Bài 3: Tìm điểm M trên đồ thị của hàm số cách đều hai trục toạ độ.
Bài 4: Tìm số tự nhiên nhỏ nhất sao cho khi bình phương số đó ta được số tự nhiên có dạng
.
Bài 5: Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e.
Biết rằng P(1) = 8, P(2) = 18, P(3) = 32, P(4) = 50, P(5) = 72. Tính P(30).
Bài 6: Tìm các nghiệm gần đúng (độ, phút, giây) của phương trình:
.
Bài 7: Cho dãy số (un) thoả mãn điều kiện sau:
Hãy tính tổng 22 số hạng đầu tiên của dãy số (un).
Bài 8: Cho điểm A nằm tuỳ ý trên elíp (E): và điểm B nằm tuỳ ý trên đường
thẳng 5x – 7y – 35 = 0.Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB.
Bài 9: Ông A gửi tiết kiệm 100 triệu đồng với lãi suất không đổi r = 0,7% một tháng. Mỗi
tháng ông A phải rút ra 1 triệu đồng để trả chi phí sinh hoạt.
Hỏi số tiền ông A có được sau 1 năm là bao nhiêu?
Hỏi sau bao nhiêu tháng (kể từ khi gửi tiền) thì ông A không thể rút ra được số tiền lớn hơn 90 triệu đồng?
Bài 10: Cho tứ diện ABCD có AB = 1cm, AC = 2cm, AD=5cm. Và
.
Tính giá trị gần đúng thể tích của khối tứ diện ABCD.
CÁCH GIẢI, ĐÁP SỐ VÀ HƯỚNG DẪN CHO ĐIỂM
Bài
Cách giải
Đáp số
Điểm
1
x = 21
y = 28
2,0
2
Mode Mode Mode Mode 2 (sử dụng đơn vị radian)
Bấm dấu = nhiều lần (17 lần) cho đến khi được một số không đổi 0.876726215
0.8767
2,0
3
M(x:y) ( cách đều hai trục toạ độ, tức là
Dùng lệnh SHIFT SOLVE (gán X=1 và gán X = 0.5)
M1(0,7024;0,7024)
M2(-0,4127;0,4127)
2,0
4
Bước 1: Tìm 4 chữ số tận cùng của số cần tìm x sao cho .
Bước 2: Chèn vào giữa 2009đầu và 2009 cuối các số 0 rồi các số 9(số các số 0 bằng số các số 9)
Bước 3: Thử lại chỉ có 448253 thoả mãn bài toán
Có 6 số: 3253,8253,1747,
2997,6747,7997.
Kết quả: 448253
2,0
5
P(1) = 8 =2.(1+1)2, P(2) =18 = 2(2+1)2, P(3) = 32 = 2(3+1)2,
P(4) = 50 = 2(4+1)2, P(5) = 72 = 2(5+1)2
Suy ra P(x) = (x-1)(x-2)(x-3)(x-4)(x-5) + 2(x+1)2
P(30) = 14252522
2,0
6
Đặt thì
Khi t = 1 thì
Khi t = -3 thì
Vậy phương trình đã cho có các nghiệm là
2,0
7
2,0
8
Vì đường thẳng (:5x – 7y – 35 = 0 cắt tia Ox và tia Oy’ nên điểm A thuộc góc phần tư thứ tư.
Gỉa sử
AB ngắn nhất khi B là hình chiếu vuông góc của A lên ( nên
Xét hàm số
Ta có
(vì x >0)
SHIFT d/dx
f(0) = -14, f(80/29) = -6, f(4) = -15 nên
Do đó AB nhỏ nhất bằng
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Vũ Ngọc Vinh
Dung lượng: 61,40KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)