De thi gvg
Chia sẻ bởi Nguyễn Trung Thành |
Ngày 14/10/2018 |
30
Chia sẻ tài liệu: de thi gvg thuộc Tư liệu tham khảo
Nội dung tài liệu:
đề thi giáo viên giỏi cấp tỉnh vòng lý thuyết
Năm học 2009-2010
Môn toán
Thời gian:180 phút
Phần I: trắc nghiệm khách quan (2điểm)
Câu 1. Gọi (C) là đồ thị của hàm số y = x3 – 3x2 + 3. Số tiếp tuyến của (C) kẻ qua điểm M(1;1) là
A. 0 B. 1 C. 2 D. 3
Câu 2. Tập hợp tất cả các giá trị của m để phương trình có nghiệm âm là:
A. B. C. D. R
Câu 3. Trong các hàm số sau đây , đồ thị hàm số nào có hai tiệm cận ngang?
A. B. C. D.
Câu 4. cho hình hộp ABCD.A/B/C/D/ .Gọi V và V1 theo thứ tự là thể tích khối hộp ABCD.A/B/C/D/
Và thể tích khối tứ diện ACB/D/. Khi đó tỷ số là:
A. B. C. D.
Phần II- Tự luận (8 điểm)
Câu 1: (1 điểm). Cho hàm số y = x3 + 3x2- mx – 4 (m là tham số). Tìm các giá trị của m để hàm số đồng biến trên
Câu 2: (2,5 điểm).
1/ Giải phương trình:
2/ Cho bất phương trình: Với m là tham số)
Giải bất phương trình đã cho khi m = 2.
Xác định m để bất phương trình đã cho có nghiệm x>1.
Câu 3: (1 điểm)
Trong mặt phẳng toạ độ Oxy cho đường tròn (C) có phương trình x2+ y2 + 2x - 4y -20 = 0 và điểm
A(3 ; 0). Viết phương trình đường thẳng d đi qua điểm A và cắt đường tròn (C) theo dây cung MN có độ dài nhỏ nhất.
Câu 4:(1 điểm). Đội học sinh giỏi của một trường THPT có 18 học sinh trong đó có 7 học sinh khối 12; 6 học sinh khối 11 và 5 học sinh khối 10. Có bao nhiêu cách cử 8 học sinh trong đội đi dự trại hè sao cho mỗi khối có ít nhất một học sinh được chọn.
Câu 5: (2điểm).
Cho hình hộp chữ nhật ABCD.A,B,C,D, có đáy ABCD là hình vuông với AB = 1 và AA, = a (a>0)
1/ Tính thể tích khối tứ diện BDB/D/ . Tính khoảng cách từ điểm D đến mặt phẳng (AB/C);
2/ Khi a thay đổi, hãy xác định a để góc giữa đường thẳng B/D và mặt phẳng (BDC/) là lớn nhất.
Câu 6: (0,5 điểm)
Chứng minh rằng với mọi số nguyên dương n, ta có:
...................................... HếT................................................
Năm học 2009-2010
Môn toán
Thời gian:180 phút
Phần I: trắc nghiệm khách quan (2điểm)
Câu 1. Gọi (C) là đồ thị của hàm số y = x3 – 3x2 + 3. Số tiếp tuyến của (C) kẻ qua điểm M(1;1) là
A. 0 B. 1 C. 2 D. 3
Câu 2. Tập hợp tất cả các giá trị của m để phương trình có nghiệm âm là:
A. B. C. D. R
Câu 3. Trong các hàm số sau đây , đồ thị hàm số nào có hai tiệm cận ngang?
A. B. C. D.
Câu 4. cho hình hộp ABCD.A/B/C/D/ .Gọi V và V1 theo thứ tự là thể tích khối hộp ABCD.A/B/C/D/
Và thể tích khối tứ diện ACB/D/. Khi đó tỷ số là:
A. B. C. D.
Phần II- Tự luận (8 điểm)
Câu 1: (1 điểm). Cho hàm số y = x3 + 3x2- mx – 4 (m là tham số). Tìm các giá trị của m để hàm số đồng biến trên
Câu 2: (2,5 điểm).
1/ Giải phương trình:
2/ Cho bất phương trình: Với m là tham số)
Giải bất phương trình đã cho khi m = 2.
Xác định m để bất phương trình đã cho có nghiệm x>1.
Câu 3: (1 điểm)
Trong mặt phẳng toạ độ Oxy cho đường tròn (C) có phương trình x2+ y2 + 2x - 4y -20 = 0 và điểm
A(3 ; 0). Viết phương trình đường thẳng d đi qua điểm A và cắt đường tròn (C) theo dây cung MN có độ dài nhỏ nhất.
Câu 4:(1 điểm). Đội học sinh giỏi của một trường THPT có 18 học sinh trong đó có 7 học sinh khối 12; 6 học sinh khối 11 và 5 học sinh khối 10. Có bao nhiêu cách cử 8 học sinh trong đội đi dự trại hè sao cho mỗi khối có ít nhất một học sinh được chọn.
Câu 5: (2điểm).
Cho hình hộp chữ nhật ABCD.A,B,C,D, có đáy ABCD là hình vuông với AB = 1 và AA, = a (a>0)
1/ Tính thể tích khối tứ diện BDB/D/ . Tính khoảng cách từ điểm D đến mặt phẳng (AB/C);
2/ Khi a thay đổi, hãy xác định a để góc giữa đường thẳng B/D và mặt phẳng (BDC/) là lớn nhất.
Câu 6: (0,5 điểm)
Chứng minh rằng với mọi số nguyên dương n, ta có:
...................................... HếT................................................
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Trung Thành
Dung lượng: 48,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)