De-thi (ĐA)THPTtoan-2016-da-phuc-ha-noi-lan-3
Chia sẻ bởi Phạm Huy Hoạt |
Ngày 14/10/2018 |
28
Chia sẻ tài liệu: de-thi (ĐA)THPTtoan-2016-da-phuc-ha-noi-lan-3 thuộc Tư liệu tham khảo
Nội dung tài liệu:
TRƯỜNG THPT ĐA PHÚC
ĐỀ THI THỬ LẦN 3
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
Môn thi: TOÁN
Thời gian làm bài: 180 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Câu 2 (1,0 điểm). Tìm các giá trị của m để đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt A và B sao cho trung điểm của AB nằm trên trục hoành.
Câu 3 (1,0 điểm).
Cho số phức z thoả mãn: Tính môđun của số phức
Giải phương trình:
Câu 4 (1,0 điểm). Tính tích phân
Câu 5 (1,0 điểm). Trong không gian với hệ toạ độ Oxyz, cho điểm và mặt phẳng Viết phương trình mặt cầu (S) có tâm thuộc trục Ox, đi qua A và tiếp xúc với (P).
Câu 6 (1,0 điểm).
Cho Tính giá trị biểu thức
Trong giải bóng đá của trường THPT X có 16 đội tham gia, trong đó có một đội của lớp Y và một đội của lớp Z. Ban tổ chức giải tiến hành bốc thăm ngẫu nhiên để chia thành hai bảng A và B, mỗi bảng 8 đội. Tính xác suất để hai đội Y và Z ở cùng một bảng.
Câu 7 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi I là trung điểm của cạnh AB. Các mặt phẳng (SBD) và (SIC) cùng vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 600. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và IC theo a.
Câu 8 (1,0 điểm). Trong mặt phẳng toạ độ Oxy, cho tam giác ABC vuông tại A. Gọi D là điểm đối xứng của A qua BC. Đường thẳng đi qua A vuông góc với CD có phương trình Biết rằng phương trình đường thẳng AD: , điểm B nằm trên đường thẳng Tìm toạ độ các điểm B, C.
Câu 9 (1,0 điểm). Giải hệ phương trình
Câu 10 (1,0 điểm). Cho các số thực dương a, b, c thoả mãn Tìm giá trị nhỏ nhất của biểu thức
______________Hết______________
Họ và tên thí sinh: .......................................................... Số báo danh: ……………….………
TRƯỜNG THPT ĐA PHÚC
THI THỬ LẦN 3
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
ĐÁP ÁN – THANG ĐIỂM
Mônthi: TOÁN
Câu
Đápán
Điểm
1
(1,0 điểm)
(1 điểm)
TXĐ:
0.25
Sự biến thiên:
Gới hạn:
0.25
Bảng biến thiên
x
-2 0 2
y’
- 0 + 0 - 0 +
y
Hàm số đồng biến trên mỗi khoảng và
- Hàm số nghịch biến trên mỗi khoảng và
Hàm số đạt CĐ tại (0; 3) và đạt CT tại (-2; -1); (2; -1)
Hàm số đạt cực đại . Hàm số đạt cực tiểu tại .
0.25
Vẽ đồ thị: Đồ thị cắt trục Oy tại điểm (0;3) và nhận Oy làm trục đối xứng
0.25
2
(1 điểm)
(1 điểm)
*Phương trình hoành độ giao điểm: (vì không là nghiệm).
0.25
*Đường thẳng d cắt đồ thị hàm số tại hai điểm phân biệt khi và chỉ khi (1) có hai nghiệm phân biệt
0.25
*Khi đóvà trung điểm I của AB là
0.25
*Vì I thuộc Ox nên ; theo vi-ét ta có: .
Vậy ta có phương trình:
0.25
3
(1 điểm)
a) (0,5 điểm)
* Ta có:
0.25
*Vì vậy
0.25
b) (0.5 điểm)
Phương trình tương đương với:
0.25
0.25
4
(1 điểm)
Tính tích phân (1 điểm)
*Ta có:
0.25
*Đặt
0.25
*Với
0.25
*Vì vậy
0.25
5
(1 điểm)
Viết phương trình mặt cầu (1 điểm
ĐỀ THI THỬ LẦN 3
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
Môn thi: TOÁN
Thời gian làm bài: 180 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Câu 2 (1,0 điểm). Tìm các giá trị của m để đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt A và B sao cho trung điểm của AB nằm trên trục hoành.
Câu 3 (1,0 điểm).
Cho số phức z thoả mãn: Tính môđun của số phức
Giải phương trình:
Câu 4 (1,0 điểm). Tính tích phân
Câu 5 (1,0 điểm). Trong không gian với hệ toạ độ Oxyz, cho điểm và mặt phẳng Viết phương trình mặt cầu (S) có tâm thuộc trục Ox, đi qua A và tiếp xúc với (P).
Câu 6 (1,0 điểm).
Cho Tính giá trị biểu thức
Trong giải bóng đá của trường THPT X có 16 đội tham gia, trong đó có một đội của lớp Y và một đội của lớp Z. Ban tổ chức giải tiến hành bốc thăm ngẫu nhiên để chia thành hai bảng A và B, mỗi bảng 8 đội. Tính xác suất để hai đội Y và Z ở cùng một bảng.
Câu 7 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi I là trung điểm của cạnh AB. Các mặt phẳng (SBD) và (SIC) cùng vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 600. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và IC theo a.
Câu 8 (1,0 điểm). Trong mặt phẳng toạ độ Oxy, cho tam giác ABC vuông tại A. Gọi D là điểm đối xứng của A qua BC. Đường thẳng đi qua A vuông góc với CD có phương trình Biết rằng phương trình đường thẳng AD: , điểm B nằm trên đường thẳng Tìm toạ độ các điểm B, C.
Câu 9 (1,0 điểm). Giải hệ phương trình
Câu 10 (1,0 điểm). Cho các số thực dương a, b, c thoả mãn Tìm giá trị nhỏ nhất của biểu thức
______________Hết______________
Họ và tên thí sinh: .......................................................... Số báo danh: ……………….………
TRƯỜNG THPT ĐA PHÚC
THI THỬ LẦN 3
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
ĐÁP ÁN – THANG ĐIỂM
Mônthi: TOÁN
Câu
Đápán
Điểm
1
(1,0 điểm)
(1 điểm)
TXĐ:
0.25
Sự biến thiên:
Gới hạn:
0.25
Bảng biến thiên
x
-2 0 2
y’
- 0 + 0 - 0 +
y
Hàm số đồng biến trên mỗi khoảng và
- Hàm số nghịch biến trên mỗi khoảng và
Hàm số đạt CĐ tại (0; 3) và đạt CT tại (-2; -1); (2; -1)
Hàm số đạt cực đại . Hàm số đạt cực tiểu tại .
0.25
Vẽ đồ thị: Đồ thị cắt trục Oy tại điểm (0;3) và nhận Oy làm trục đối xứng
0.25
2
(1 điểm)
(1 điểm)
*Phương trình hoành độ giao điểm: (vì không là nghiệm).
0.25
*Đường thẳng d cắt đồ thị hàm số tại hai điểm phân biệt khi và chỉ khi (1) có hai nghiệm phân biệt
0.25
*Khi đóvà trung điểm I của AB là
0.25
*Vì I thuộc Ox nên ; theo vi-ét ta có: .
Vậy ta có phương trình:
0.25
3
(1 điểm)
a) (0,5 điểm)
* Ta có:
0.25
*Vì vậy
0.25
b) (0.5 điểm)
Phương trình tương đương với:
0.25
0.25
4
(1 điểm)
Tính tích phân (1 điểm)
*Ta có:
0.25
*Đặt
0.25
*Với
0.25
*Vì vậy
0.25
5
(1 điểm)
Viết phương trình mặt cầu (1 điểm
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Huy Hoạt
Dung lượng: 273,24KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)