Đề thi chọn HSG môn toán lớp 11
Chia sẻ bởi Lê Thị Phương Mai |
Ngày 14/10/2018 |
34
Chia sẻ tài liệu: Đề thi chọn HSG môn toán lớp 11 thuộc Tư liệu tham khảo
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG (Đề thi chính thức)
KỲ THI CHỌN HỌC SINH GIỎI LỚP 10 NĂM HỌC: 2010 - 2011 Môn: TOÁN Thời gian: 150 phút (không kể thời gian giao đề)
Câu I (1,5 điểm)
1) Xác định tính chẵn - lẻ của hàm số
2) Cho các nửa khoảng Với điều kiện nào của các số thực a và b thì C là một đoạn? Tính độ dài của đoạn C khi đó.
Câu II (2,0 điểm)
1) Tìm m để phương trình |x2 - 1| = m4 - m2 + 1 có bốn nghiệm phân biệt.
2) Giải và biện luận (theo tham số m) bất phương trình:
Câu III (2,5 điểm)
1) Giải phương trình
2) Giải hệ phương trình
Câu IV (3,0 điểm)
1) Cho tam giác ABC có AB = c, AC = b và Các điểm M, N được xác định bởi .Tìm hệ thức liên hệ giữa b và c để AM và CN vuông góc với nhau.
2) Cho tam giác ABC. Trên các cạnh BC, CA và AB của tam giác đó, lần lượt lấy các điểm và Gọi và S tương ứng là diện tích của các tam giác và ABC. Chứng minh bất đẳng thức .Dấu đẳng thức xảy ra khi và chỉ khi nào?
Câu V (1,0 điểm)
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm O bán kính R (R > 0, R không đổi). Gọi A và B lần lượt là các điểm di động trên trục hoành và trục tung sao cho đường thẳng AB luôn tiếp xúc với đường tròn đó. Hãy xác định tọa độ của các điểm A, B để tam giác OAB có diện tích nhỏ nhất.
KỲ THI CHỌN HỌC SINH GIỎI LỚP 10 NĂM HỌC: 2010 - 2011 Môn: TOÁN Thời gian: 150 phút (không kể thời gian giao đề)
Câu I (1,5 điểm)
1) Xác định tính chẵn - lẻ của hàm số
2) Cho các nửa khoảng Với điều kiện nào của các số thực a và b thì C là một đoạn? Tính độ dài của đoạn C khi đó.
Câu II (2,0 điểm)
1) Tìm m để phương trình |x2 - 1| = m4 - m2 + 1 có bốn nghiệm phân biệt.
2) Giải và biện luận (theo tham số m) bất phương trình:
Câu III (2,5 điểm)
1) Giải phương trình
2) Giải hệ phương trình
Câu IV (3,0 điểm)
1) Cho tam giác ABC có AB = c, AC = b và Các điểm M, N được xác định bởi .Tìm hệ thức liên hệ giữa b và c để AM và CN vuông góc với nhau.
2) Cho tam giác ABC. Trên các cạnh BC, CA và AB của tam giác đó, lần lượt lấy các điểm và Gọi và S tương ứng là diện tích của các tam giác và ABC. Chứng minh bất đẳng thức .Dấu đẳng thức xảy ra khi và chỉ khi nào?
Câu V (1,0 điểm)
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm O bán kính R (R > 0, R không đổi). Gọi A và B lần lượt là các điểm di động trên trục hoành và trục tung sao cho đường thẳng AB luôn tiếp xúc với đường tròn đó. Hãy xác định tọa độ của các điểm A, B để tam giác OAB có diện tích nhỏ nhất.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Thị Phương Mai
Dung lượng: 101,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)