Đề&đáp án thi thử Toán 2011 (đề 14)

Chia sẻ bởi Hoàng Ngọc Hiếu | Ngày 14/10/2018 | 20

Chia sẻ tài liệu: Đề&đáp án thi thử Toán 2011 (đề 14) thuộc Tư liệu tham khảo

Nội dung tài liệu:

http://ductam_tp.violet.vn/

ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011
Môn: TOÁN (Thời gian : 180 phút)

PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I (2 điểm):
1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : . Tìm điểm thuộc (C) cách đều 2 đường tiệm cận .
2).Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn  .
sin6x + cos6x = m ( sin4x + cos4x )
Câu II (2 điểm):
1).Tìm các nghiệm trên  của phương trình : 
2).Giải phương trình:
Câu III (1 điểm): Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bên SA = 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB.
1).Tính góc giữa AC và SD; 2).Tính khoảng cách giữa BC và SD.
Câu IV (2 điểm):
1).Tính tích phân: I
2). a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i
b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn :
1 < | z – 1 | < 2
PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b
Câu V.a.( 2 điểm ) Theo chương trình Chuẩn
1).Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d1) : 3x – 4y + 27 = 0 và (d2) : x + 2y – 5 = 0
2). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng:
 và 
Chứng minh rằng (d1) và (d2) chéo nhau.
Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2).
3). Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu .
Câu V.b.( 2 điểm ) Theo chương trình Nâng cao
1).Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : x – y -  = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC .
2).Cho đường thẳng (d) :  và 2 mp (P) : x + 2y + 2z + 3 = 0 và (Q) : x + 2y + 2z + 7 = 0
a. Viết phương trình hình chiếu của (d) trên (P)
b. Lập ph.trình mặt cầu có tâm I thuộc đường thẳng (d) và tiếp xúc với hai mặt phẳng (P) và (Q)
3). Chọn ngẫu nhiên 5 con bài trong bộ tú lơ khơ . Tính xác suất sao cho trong 5 quân bài đó có đúng 3quân bài thuộc 1 bộ ( ví dụ 3 con K )
----------------------------- Hết -----------------------------
Cán bộ coi thi không giải thích gì thêm.
trường thpt hậu lộc 2


đáp án đề thi thử đại học lần 1 năm học 2009-2010
Môn thi: toán
Thời gian làm bài: 180 phút, không kể thời gian giao đề



Câu
Nội dung
Điểm

I
2.0đ













1
1,25đ
Khảo sát và vẽ ĐTHS
- TXĐ: D = {2}
- Sự biến thiên:
+ ) Giới hạn : nên đường thẳng y = 3 là tiêm cận ngang của đồ thị hàm số
+) Do đó đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số
+) Bảng biến thiên:
Ta có : y’ = < 0 ,








Hàm số nghịch biến trên mỗi khoảng và
- Đồ thị
+ Giao điểm với trục tung : (0 ;2)
+ Giao điểm với trục hoành : ( 4/3 ; 0)
+ ĐTHS nhận giao điểm I(2 ;3)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Hoàng Ngọc Hiếu
Dung lượng: 456,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)