Dap an de thi 10 chuyen toan PY, 2009-2010
Chia sẻ bởi Dỗquang Minh |
Ngày 14/10/2018 |
50
Chia sẻ tài liệu: dap an de thi 10 chuyen toan PY, 2009-2010 thuộc Tư liệu tham khảo
Nội dung tài liệu:
SỞ GD & ĐT PHÚ YÊN
***
KỲ THI TUYỂN SINH THPT NĂM HỌC 2009 -2010
MÔN : TOÁN (Hệ số 2)
-------
ĐỀ CHÍNH THỨC
DẪN CHẤM THI
Bản hướng dẫn chấm gồm 04 trang
I- Hướng dẫn chung:
1- Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm từng phần như hướng dẫn quy định.
2- Việc chi tiết hoá thang điểm (nếu có) so với thang điểm hướng dẫn chấm phải bảo đảm không sai lệch với hướng dẫn chấm và được thống nhất thực hiện trong Hội đồng chấm thi.
3- Điểm toàn bài thi không làm tròn số.
II- Đáp án và thang điểm:
CÂU
ĐÁP ÁN
Điểm
Câu 1a.
(2,0đ)
Ta có phương trình :
Khi a =1 , (1)
Dễ thấy x = 0 không phải là nghiệm.
Chia 2 vế của (2) cho x2 ta được: (3).
Đặt và
Phương trình (3) viết lại là :
Giải (3) ta được hai nghiệm và đều không thỏa điều kiện |t|( 2.Vậy với a = 1, phương trình đã cho vô nghiệm.
0,50
0,50
0,50
0,50
Câu1b.
(2,0đ)
Vì x = 0 không phải là nghiệm của (1) nên ta cũng chia 2 vế cho x2 ta có phương trình : .
Đặt , trình sẽ là : t2 + at - 1 = 0 (4).
Do phương trình đã cho có nghiệm nên (4) có nghiệm |t| ( 2. Từ (4) suy ra .
Từ đó :
Vì |t| ( 2 nên t2 >0 và t2 – 4 ( 0 , do vậy (5) đúng, suy ra a2 > 2.
0,50
0,50
0,50
0,50
Câu 2a.
(2,0đ)
Điều kiện : .
Đặt :
Phương trình đã có trở thành hệ :
Suy ra : (3+uv)2-2uv = 9
.
Vậy phương trình có nghiệm là x =-3 , x = 6.
0,50
0,50
0,50
0,50
Câu 2b.
(2,0đ)
Ta có hệ phương trình :
.
Vậy hệ phương trình chỉ có 1 cặp nghiệm duy nhất: (x ;y ;z) = (0 ;0; 1).
0,50
0,50
0,50
0,50
Câu 3.
(3,0đ)
Ta có : 3x2 + 6y2 + 2z2 +3y2z2 -18x = 6 (1)
Suy ra : z2 3 và 2z2 ( 33
Hay |z| ( 3.
Vì z nguyên suy ra z = 0 hoặc |z| = 3.
a) z = 0 , (2) ( (x-3)2 + 2y2 = 11 (3)
Từ (3) suy ra 2y2 ( 11 ( |y| ( 2.
Với y = 0 , (3) không có số nguyên x nào thỏa mãn.
Với |y| = 1, từ (3) suy ra x { 0 ; 6}.
b) |z| = 3, (2) ( (x-3)2 + 11 y2 = 5 (4)
Từ (4) ( 11y2 ( 5 ( y = 0, (4) không có số nguyên x nào thỏa mãn.
Vậy phương trình (1) có 4 nghiệm nguyên (x ;y ;z) là (0;1;0) ; (0 ;-1;0) ; (6 ;1 ;0) và (6 ;-1 ;0).
0,50
0,50
0,50
0,50
0,50
0,50
Câu 4a.
(2,0đ)
Lập phương 2 vế của (1) ta được :
(2)
Theo bất đẳng thức Cauchy, ta có :
(3)
(4)
hai bất đẳng thức (3) và (4) ta được bất đẳng thức (2), do đó (1) được chứng minh.
***
KỲ THI TUYỂN SINH THPT NĂM HỌC 2009 -2010
MÔN : TOÁN (Hệ số 2)
-------
ĐỀ CHÍNH THỨC
DẪN CHẤM THI
Bản hướng dẫn chấm gồm 04 trang
I- Hướng dẫn chung:
1- Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm từng phần như hướng dẫn quy định.
2- Việc chi tiết hoá thang điểm (nếu có) so với thang điểm hướng dẫn chấm phải bảo đảm không sai lệch với hướng dẫn chấm và được thống nhất thực hiện trong Hội đồng chấm thi.
3- Điểm toàn bài thi không làm tròn số.
II- Đáp án và thang điểm:
CÂU
ĐÁP ÁN
Điểm
Câu 1a.
(2,0đ)
Ta có phương trình :
Khi a =1 , (1)
Dễ thấy x = 0 không phải là nghiệm.
Chia 2 vế của (2) cho x2 ta được: (3).
Đặt và
Phương trình (3) viết lại là :
Giải (3) ta được hai nghiệm và đều không thỏa điều kiện |t|( 2.Vậy với a = 1, phương trình đã cho vô nghiệm.
0,50
0,50
0,50
0,50
Câu1b.
(2,0đ)
Vì x = 0 không phải là nghiệm của (1) nên ta cũng chia 2 vế cho x2 ta có phương trình : .
Đặt , trình sẽ là : t2 + at - 1 = 0 (4).
Do phương trình đã cho có nghiệm nên (4) có nghiệm |t| ( 2. Từ (4) suy ra .
Từ đó :
Vì |t| ( 2 nên t2 >0 và t2 – 4 ( 0 , do vậy (5) đúng, suy ra a2 > 2.
0,50
0,50
0,50
0,50
Câu 2a.
(2,0đ)
Điều kiện : .
Đặt :
Phương trình đã có trở thành hệ :
Suy ra : (3+uv)2-2uv = 9
.
Vậy phương trình có nghiệm là x =-3 , x = 6.
0,50
0,50
0,50
0,50
Câu 2b.
(2,0đ)
Ta có hệ phương trình :
.
Vậy hệ phương trình chỉ có 1 cặp nghiệm duy nhất: (x ;y ;z) = (0 ;0; 1).
0,50
0,50
0,50
0,50
Câu 3.
(3,0đ)
Ta có : 3x2 + 6y2 + 2z2 +3y2z2 -18x = 6 (1)
Suy ra : z2 3 và 2z2 ( 33
Hay |z| ( 3.
Vì z nguyên suy ra z = 0 hoặc |z| = 3.
a) z = 0 , (2) ( (x-3)2 + 2y2 = 11 (3)
Từ (3) suy ra 2y2 ( 11 ( |y| ( 2.
Với y = 0 , (3) không có số nguyên x nào thỏa mãn.
Với |y| = 1, từ (3) suy ra x { 0 ; 6}.
b) |z| = 3, (2) ( (x-3)2 + 11 y2 = 5 (4)
Từ (4) ( 11y2 ( 5 ( y = 0, (4) không có số nguyên x nào thỏa mãn.
Vậy phương trình (1) có 4 nghiệm nguyên (x ;y ;z) là (0;1;0) ; (0 ;-1;0) ; (6 ;1 ;0) và (6 ;-1 ;0).
0,50
0,50
0,50
0,50
0,50
0,50
Câu 4a.
(2,0đ)
Lập phương 2 vế của (1) ta được :
(2)
Theo bất đẳng thức Cauchy, ta có :
(3)
(4)
hai bất đẳng thức (3) và (4) ta được bất đẳng thức (2), do đó (1) được chứng minh.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Dỗquang Minh
Dung lượng: 190,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)