Cực tri hs

Chia sẻ bởi Mai Lê | Ngày 14/10/2018 | 38

Chia sẻ tài liệu: cực tri hs thuộc Tư liệu tham khảo

Nội dung tài liệu:

Đề số 1 : các bài toán chọn lọc về kshs :
II) Hàm đa thức :
Câu 1: Cho hàm số (C)
Tìm m để hàm đồng biến trên 
Tìm m để hàm số có CĐ, CT thỏa mãn:

Hoành độ các điểm cực trị lớn hơn -1
 , với  là hoành độ các điểm cực trị
Có ít nhất 1 hoành độ cực trị thuộc khoảng (-2; 0)

Câu 2: Cho hàm số . Tìm m để hàm số có:
2.1. Cực trị và các điểm cực trị cách đều đường thẳng y = x – 1
2.2. Phương trình đường thẳng đi qua các điểm cực trị song song với y = - 4x + 3
2.3. Phương trình đường thẳng đi qua các điểm cực trị tạo với đường thẳng x + 4y – 5 = 0 một góc .
2.4. Các điểm cực trị đối xứng qua tâm 
2.5. Các điểm cực trị đối xứng qua đường thẳng 
2.6. Các điểm cực trị nằm về 2 phía đối với đường thẳng y = 4x + 5.
2.7. Có cực trị và chứng minh khoảng cách giữa 2 điểm cực trị lớn hơn .
2.8. Cực trị tại  thỏa mãn: .

Câu 3: Cho hàm số 
3.1. Tìm m để hàm số chỉ có cực tiểu mà không có cực đại
3.2. Tìm m để hàm số có 3 cực trị là 3 đỉnh của một tam giác:
a. Vuông cân
b. Đều
c. Tam giác có diện tích bằng 4.
3.3. Viết phương trình parabol đi qua 3 điểm cực trị.
3.4. Tìm m để parabol đi qua 3 điểm cực trị đi qua điểm 

Câu 4: Cho hàm số  (C)
4.1. Tìm điểm trên trục hoành sao từ đó kẻ được 3 tiếp tuyến đến (C);
4.2. Tìm m để hàm số tiếp xúc với đường thẳng y = mx;
4.3. Tìm 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua tâm M(-1; 3);
4.4. Tìm 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua đt 2x – y + 2 = 0;
4.5. Biện luận theo m số nghiệm của phương trình sau:


4.6. Chứng minh tiếp tuyến tại điểm uốn có hệ số góc lớn nhất.

Câu 5: Cho hàm số (C): và đường thẳng d: y = x + 2.
Tìm m để hàm số (C) cắt đường thẳng d:
5.1. Tại đúng 2 điểm phân biệt.
5.2. Tại 3 điểm phân biệt có hoành độ dương.
5.3. Tại 3 điểm phân biệt A, B, C sao cho AB = BC
5.4. Tại 3 điểm phân biệt lập thành cấp số nhân.

Câu 6: Cho hàm số 
6.1. Tìm m để hàm số cắt Ox tại 4 điểm phân biệt lập thành cấp số cộng;
6.2. Tìm m để hàm số cắt Ox tại 3 điểm phân biệt có hoành độ nhỏ hơn 3.

II) Hàm phân thức :
Câu I: Cho hàm số  (C)
I.1. Viết phương trình tiếp tuyến đi qua điểm M(2 ; 3) đến (C)
I.2. Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của 2 đường tiệm cận.
I.3. Viết phương trình tiếp tuyến tại điểm , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác có diện tích bằng 1.
I.4. Viết phương trình tiếp tuyến tại điểm , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác cân.
Câu II: Cho hàm số  
II.1. CMR đồ thị hàm số luôn tiếp xúc với một đường thẳng cố định tại 1 điểm cố định.
II.2. Tiếp tuyến tại  cắt 2 tiệm cận tại A, B. CMR M là trung điểm của AB
II.3. Cho điểm . Tiếp tuyến của tại M cắt các tiệm cận của (C) tại các điểm A và B. Chứng minh diện tích tam giác AIB không đổi, I là giao của 2 tiệm cận.
Tìm M để chu vi tam giác AIB nhỏ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Mai Lê
Dung lượng: 117,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)