Chuyên đề bồi dưỡng HSG MTBT(sưu tầm)

Chia sẻ bởi Lê Đức Hiền | Ngày 14/10/2018 | 81

Chia sẻ tài liệu: Chuyên đề bồi dưỡng HSG MTBT(sưu tầm) thuộc Tư liệu tham khảo

Nội dung tài liệu:

I.CÁC BÀI TOÁN VỀ : “ PHÉP NHÂN TRÀN MÀN HÌNH ”
Bài 1:
Tính chính xác tổng S = 1.1! + 2.2! + 3.3! + 4.4! + ... + 16.16!.
Giải:
Vì n . n! = (n + 1 – 1).n! = (n + 1)! – n! nên:
S = 1.1! + 2.2! + 3.3! + 4.4! + ... + 16.16! = (2! – 1!) + (3! – 2!) + ... + (17! – 16!)
S = 17! – 1!.
Không thể tính 17 bằng máy tính vì 17! Là một số có nhiều hơn 10 chữ số (tràn màn hình). Nên ta tính theo cách sau:
Ta biểu diễn S dưới dạng : a.10n + b với a, b phù hợp để khi thực hiện phép tính, máy không bị tràn, cho kết quả chính xác.
Ta có : 17! = 13! . 14 . 15 . 16 . 17 = 6227020800 . 57120
Lại có: 13! = 6227020800 = 6227 . 106 + 208 . 102 nên
S = (6227 . 106 + 208 . 102) . 5712 . 10 – 1
= 35568624 . 107 + 1188096 . 103 – 1 = 355687428096000 – 1
= 355687428095999.
Bài 2:
Tính kết quả đúng của các tích sau:
M = 2222255555 . 2222266666.
N = 20032003 . 20042004.
Giải:
Đặt A = 22222, B = 55555, C = 666666. Ta có M = (A.105 + B)(A.105 + C) = A2.1010 + AB.105 + AC.105 + BC Tính trên máy: A2 = 493817284 ; AB = 1234543210 ; AC = 1481451852 ; BC = 3703629630 Tính trên giấy:
A2.1010
4
9
3
8
1
7
2
8
4
0
0
0
0
0
0
0
0
0
0

AB.105




1
2
3
4
5
4
3
2
1
0
0
0
0
0
0

AC.105




1
4
8
1
4
5
1
8
5
2
0
0
0
0
0

BC









3
7
0
3
6
2
9
6
3
0

M
4
9
3
8
4
4
4
4
4
3
2
0
9
8
2
9
6
3
0

Đặt X = 2003, Y = 2004. Ta có: N = (X.104 + X) (Y.104 + Y) = XY.108 + 2XY.104 + XY Tính XY, 2XY trên máy, rồi tính N trên giấy như câu a)
Kết quả:
M = 4938444443209829630.
N = 401481484254012.
Bài tập tương tự:
Tính chính xác các phép tính sau:
A = 20!.
B = 5555566666 . 6666677777
C = 20072007 . 20082008
10384713
201220032

II. TÌM SỐ DƯ CỦA PHÉP CHIA SỐ NGUYÊN
a) Khi đề cho số bé hơn 10 chữ số: Số bị chia = số chia . thương + số dư (a = bq + r) (0 < r < b)
Suy ra r = a – b . q
Ví dụ : Tìm số dư trong các phép chia sau:
9124565217 cho 123456
987896854 cho 698521
b) Khi đề cho số lớn hơn 10 chữ số:
Phương pháp:
Tìm số dư của A khi chia cho B ( A là số có nhiều hơn 10 chữ số)
Cắt ra thành 2 nhóm , nhóm đầu có chín chữ số (kể từ bên trái). Tìm số dư phần đầu khi chia cho B.
Viết liên tiếp sau số dư phần còn lại (tối đa đủ 9 chữ số) rồi tìm số dư lần hai. Nếu còn nữa tính liên tiếp như vậy.
Ví dụ: Tìm số dư của phép chia 2345678901234 cho 4567.
Ta tìm số dư của phép chia 234567890 cho 4567: Được kết quả số dư là : 2203
Tìm tiếp số dư của phép chia 22031234 cho 4567.
Kết quả số dư cuối cùng là 26.
Bài tập: Tìm số dư của các phép chia:
983637955 cho 9604325
903566896235 cho 37869.
1234567890987654321 : 123456
c) Dùng kiến thức về đồng dư để tìm số dư.
* Phép đồng dư:
+ Định nghĩa: Nếu hai số nguyên a và b chia cho c (c khác 0) có cùng số dư
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Lê Đức Hiền
Dung lượng: 340,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)