Chuẩn Kiến thức - Kỹ năng Toán lớp 12

Chia sẻ bởi Trần Xuân Học | Ngày 14/10/2018 | 22

Chia sẻ tài liệu: Chuẩn Kiến thức - Kỹ năng Toán lớp 12 thuộc Tư liệu tham khảo

Nội dung tài liệu:

lớp 12

Chủ đề
Mức độ cần đạt

Ghi chú

I. dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
1. dụng đạo hàm cấp một để xét tính đơn điệu của hàm số.




Về kiến thức :
Biết mối liên hệ giữa sự đồng biến, nghịch biến của một hàm số và dấu đạo hàm cấp một của nó.
Về kỹ năng:
- Biết cách xét sự đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó.





Ví dụ. Xét sự đồng biến, nghịch biến của các hàm số : y = x4 - 2x2 + 3, y = 2x3 - 6x + 2, y =

2. Cực trị của hàm số.
Định nghĩa. Điều kiện đủ để có cực trị.
Về kiến thức :
- Biết các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số.
- Biết các điều kiện đủ để có điểm cực trị của hàm số.
Về kỹ năng:
- Biết cách tìm điểm cực trị của hàm số.




Ví dụ. Tìm các điểm cực trị của các hàm số y = x3(1 - x)2, y = 2x3 + 3x2 - 36x - 10.


3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
Về kiến thức :
- Biết các khái niệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập hợp số.
Về kỹ năng:
- Biết cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, một khoảng.
 Ví dụ. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x3 - 3x2 - 9x + 35 trên đoạn [- 4; 4].
Ví dụ. Tính các cạnh của hình chữ nhật có chu vi nhỏ nhất trong tất cả các hình chữ nhật có diện tích 48m2.

4. Đường tiệm cận của đồ thị hàm số. Định nghĩa và cách tìm các đường tiệm cận đứng, đường tiệm cận ngang.
Về kiến thức :
- Biết khái niệm đường tiệm cận đứng, đường tiệm cận ngang của đồ thị.
Về kỹ năng:
- Biết cách tìm đường tiệm đứng, tiệm cận ngang của đồ thị hàm số.
 Ví dụ. Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị các hàm số y = ; y =

5. Khảo sát hàm số. Sự tương giao của hai đồ thị. Cách viết phương trình tiếp tuyến của đồ thị hàm số.
Về kiến thức :
- Biết các bước khảo sát và vẽ đồ thị hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị(.
Về kỹ năng:
- Biết cách khảo sát và vẽ đồ thị của các hàm số
y = ax4 + bx2 + c (a ( 0),
y = ax3 + bx2 + cx + d (a ( 0)
và y (ac ( 0), trong đó a, b, c, d là các số cho trước .
- Biết cách dùng đồ thị hàm số để biện luận số nghiệm của một phương trình.
- Biết cách viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm thuộc đồ thị hàm số.
 Ví dụ. Khảo sát và vẽ đồ thị các hàm số : y = x2 - ; y = - x3 + 3x +1 ;
y =
Ví dụ. Dựa vào đồ thị của hàm số y = x3 + 3x2, biện luận số nghiệm của phương trình x3 + 3x2 + m = 0 theo
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Trần Xuân Học
Dung lượng: 165,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)