Cách giải phương trình lượng giác và ví dụ
Chia sẻ bởi Ca Chance |
Ngày 14/10/2018 |
36
Chia sẻ tài liệu: cách giải phương trình lượng giác và ví dụ thuộc Tư liệu tham khảo
Nội dung tài liệu:
Chương I: Phương trình lượng giác cơ bản
và một số phương trình lượng giác thường gặp
Để giải 1 PTLG , nói chung ta tiến hành theo các bước sau:
Bước 1: Đặt điều kiện để phương trình có nghĩa. Các điều kiện ấy bao hàm các điều kiện để căn có nghĩa,phân số có nghĩa, biểu thức có nghĩa. Ngoài ra trong các PTLG có chứa các biểu thức chứa va thì cần điều kiện để và có nghĩa.
Bước 2: Bằng phương pháp thích hợp đưa các phương trình đã cho về một trong các phương trình cơ bản .
Bước 3: Nghiệm tìm được phải đối chiếu với điều kiện đã đặt ra. Những nghiệm nào không thoả mãn điều kiện ấy thì bị loại.
1.1-Phương trình lượng giác cơ bản
1.1.1- Định nghĩa: Phương trình lượng giác là phương trình chứa một hay nhiều hàm số lượng giác .
1.1.2- Các phương trình lượng giác cơ bản.
a) Giải và biện luận phương trình (1)
Do nên để giải phương trình (1) ta đi biện luận theo các bước sau
Bước1: Nếu |m|>1 phương trình vô nghiệm
Bước 2: Nếu |m|<1 ,ta xét 2 khả năng
-Khả năng 1: Nếu m được biểu diễn qua sin của góc đặc biệt ,giả sử khi đó phương trình sẽ có dạng đặc biệt.
-Khả năng 2: Nếu m không biểu diễn được qua sin của góc đặc biệt khi đó đặt m= . Ta có:
Như vậy ta có thể kết luận phương trình có 2 họ nghiệm
Đặc biệt ta cần phải nhớ được các giá trị của các cung đặc biệt như vì sau khi biến đổi các bài toán thương đưa về các cung đặc biệt.
Ví dụ 1: Giải phương trình
Giải:
Ta nhận thấy không là giá trị của cung đặc biệt nào nên ta đặt =
Khi đó ta có:
Vậy phương trình có 2 họ ngiệm
Ví dụ 2: Giải phương trình
Giải:
Do nên
Vậy phương trình có hai họ nghiệm .
b) Giải và biện luận phương trình lượng giác
Ta cũng đi biện luận (b) theo m
Bước 1: Nếu phương trình vô nghiệm .
Bước 2: Nếu ta xét 2 khả năng:
-Khả năng 1: Nếu được biểu diễn qua của góc đặc biệt, giả sử góc. Khi đó phương trình có dạng
-Khả năng 2: Nếu không biểu diễn được qua của góc đặc biệt khi đó
đặt = .Ta có:
Như vậy ta có thể kết luận phương trình có 2 họ nghiệm
Ví Dụ Minh Hoạ.
Ví dụ 1: Giải phương trình sau:
Giải:
Do nên
Vậy phương trình có 2 họ nghiệm
Ví dụ 2: Giải phương trình:
Giải:
Vì và không là giá trị của cung đặc biệt nên tồn tại góc sao cho
Ta có:
Vậy phương trình có hai họ
và một số phương trình lượng giác thường gặp
Để giải 1 PTLG , nói chung ta tiến hành theo các bước sau:
Bước 1: Đặt điều kiện để phương trình có nghĩa. Các điều kiện ấy bao hàm các điều kiện để căn có nghĩa,phân số có nghĩa, biểu thức có nghĩa. Ngoài ra trong các PTLG có chứa các biểu thức chứa va thì cần điều kiện để và có nghĩa.
Bước 2: Bằng phương pháp thích hợp đưa các phương trình đã cho về một trong các phương trình cơ bản .
Bước 3: Nghiệm tìm được phải đối chiếu với điều kiện đã đặt ra. Những nghiệm nào không thoả mãn điều kiện ấy thì bị loại.
1.1-Phương trình lượng giác cơ bản
1.1.1- Định nghĩa: Phương trình lượng giác là phương trình chứa một hay nhiều hàm số lượng giác .
1.1.2- Các phương trình lượng giác cơ bản.
a) Giải và biện luận phương trình (1)
Do nên để giải phương trình (1) ta đi biện luận theo các bước sau
Bước1: Nếu |m|>1 phương trình vô nghiệm
Bước 2: Nếu |m|<1 ,ta xét 2 khả năng
-Khả năng 1: Nếu m được biểu diễn qua sin của góc đặc biệt ,giả sử khi đó phương trình sẽ có dạng đặc biệt.
-Khả năng 2: Nếu m không biểu diễn được qua sin của góc đặc biệt khi đó đặt m= . Ta có:
Như vậy ta có thể kết luận phương trình có 2 họ nghiệm
Đặc biệt ta cần phải nhớ được các giá trị của các cung đặc biệt như vì sau khi biến đổi các bài toán thương đưa về các cung đặc biệt.
Ví dụ 1: Giải phương trình
Giải:
Ta nhận thấy không là giá trị của cung đặc biệt nào nên ta đặt =
Khi đó ta có:
Vậy phương trình có 2 họ ngiệm
Ví dụ 2: Giải phương trình
Giải:
Do nên
Vậy phương trình có hai họ nghiệm .
b) Giải và biện luận phương trình lượng giác
Ta cũng đi biện luận (b) theo m
Bước 1: Nếu phương trình vô nghiệm .
Bước 2: Nếu ta xét 2 khả năng:
-Khả năng 1: Nếu được biểu diễn qua của góc đặc biệt, giả sử góc. Khi đó phương trình có dạng
-Khả năng 2: Nếu không biểu diễn được qua của góc đặc biệt khi đó
đặt = .Ta có:
Như vậy ta có thể kết luận phương trình có 2 họ nghiệm
Ví Dụ Minh Hoạ.
Ví dụ 1: Giải phương trình sau:
Giải:
Do nên
Vậy phương trình có 2 họ nghiệm
Ví dụ 2: Giải phương trình:
Giải:
Vì và không là giá trị của cung đặc biệt nên tồn tại góc sao cho
Ta có:
Vậy phương trình có hai họ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Ca Chance
Dung lượng: 3,12MB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)