Cacdangtoancoban&Ptrienlop9

Chia sẻ bởi Phùng Quang Thanh | Ngày 14/10/2018 | 21

Chia sẻ tài liệu: Cacdangtoancoban&Ptrienlop9 thuộc Tư liệu tham khảo

Nội dung tài liệu:

Dạng I:
rút gọn biểu thức
Có chứa căn thức bậc hai
Bài 1: Thực hiện phép tính:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) 
9) ;
10) ;

11) ;
12) ;
13) ;
14) ;
15) ;
16) ;
17) ;
18) ;
19) 
20) . Bài 2: Cho biểu thức 
Rút gọn biểu thức A;
Tìm giá trị của x để A > - 6.
Bài 3: Cho biểu thức 
Rút gọn biểu thức B;
Tìm giá trị của x để A > 0.
Bài 4: Cho biểu thức 
Rút gọn biểu thức C;
Tìm giá trị của x để C < 1.

Bài 5: Rút gọn biểu thức :
a) ;
b) ;
c) ;
d) 
Bài 6: Cho biểu thức 
Rút gọn biểu thức M;
So sánh M với 1.
Bài 7: Cho các biểu thức và 
Rút gọn biểu thức P và Q;
Tìm giá trị của x để P = Q.
Bài 8: Cho biểu thức 
Rút gọn biểu thức P
So sánh P với 5.
Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức  chỉ nhận đúng một giá trị nguyên.
Bài 9: Cho biểu thức 
Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
Tìm các số tự nhiên x để  là số tự nhiên;
Tính giá trị của P với x = 4 – 2.
Bài 10: Cho biểu thức : 
Rút gọn biểu thức P;
Tìm x để .



Dạng II
CÁC BÀI TOÁN VỀ HÀM SỐ VÀ ĐỒ THỊ

I.Điểm thuộc đường – đường đi qua điểm.
Điểm A(xA; yA) thuộc đồ thị hàm số y = f(x)  yA = f(xA).
Vớ dụ 1: Tỡm hệ số a của hàm số: y = ax2 biết đồ thị hàm số của nó đi qua điểm A(2;4).

Giải:
Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.22  a = 1
Vớ dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trỡnh: y = -2(x + 1). Đường thẳng (d) có đi qua A không?
Giải:
Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d)

II.Cỏch tỡm giao điểm của hai đường y = f(x) và y = g(x).
Bước 1: Tỡm hoành độ giao điểm là nghiệm của phương trỡnh f(x) = g(x) (II)
Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tỡm tung độ giao điểm.
Chỳ ý: Số nghiệm của phương trỡnh (II) là số giao điểm của hai đường trên.

III.Quan hệ giữa hai đường thẳng.
Xét hai đường thẳng : (d1) : y = a1x + b1.
(d2) : y = a2x + b2.
(d1) cắt (d2)  a1  a2.
d1) // (d2)  
d1)  (d2)  
(d1)  (d2)  a1 a2 = -1

IV.Tỡm điều kiện để 3 đường thẳng đồng qui.
Bước 1: Giải hệ phương trỡnh gồm hai đường thẳng không chứa tham số để tỡm (x;y).
Bước 2: Thay (x;y) vừa tỡm được vào phương trỡnh cũn lại để tỡm ra tham số .

V.Quan hệ giữa (d): y = ax + b và (P): y = cx2 (c0).
1.Tỡm tọa độ giao điểm của (d) và (P).
Bước 1: Tỡm hoành độ giao điểm là nghiệm của phương trỡnh:
cx2= ax + b (V)
Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx2 để tỡm tung độ giao điểm.
Chỳ ý: Số nghiệm của phương trỡnh (V) là số giao điểm của (d) và (P).
2.Tỡm điều kiện để (d) và (P).
a) (d) và (P) cắt nhau  phương trỡnh (V
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phùng Quang Thanh
Dung lượng: 2,00MB| Lượt tài: 26
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)