30 đề luyện thi đại học

Chia sẻ bởi Võ Quốc Anh | Ngày 14/10/2018 | 39

Chia sẻ tài liệu: 30 đề luyện thi đại học thuộc Tư liệu tham khảo

Nội dung tài liệu:

ĐỀ 1
Câu 1: Cho hàm số y
Khảo sát đồ thị (C) hàm số.
Tìm các điểm thuộc hai nhánh khác nhau của (C) sao cho khoảng cách giữa 2 điểm đó là ngắn nhất.
Câu 2: Cho phương trình  (m là tham số)
Giải phương trình khi m=3.
Định m để phương trình có nghiệm.
Câu 3: Giải phương trình 
Câu 4: Tính diện tích hình phẳng giới hạn bởi các đừơng
 và 
Câu 5: Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC có A(1;5);
B(-4;-5);C(4;-1). Tìm toạ độ tâm đừơng tròn nội tiếp tam giác ABC.
Câu 6: Trong không gian Oxyz cho 4 điểm A(2;-1;5);B(1;0;2);C(0;2;3);D(0;1;2). Tìm toạ độ điểm A’ là điểm đối xứng của A qua mặt phẳng (BCD).
Câu 7: Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a, góc của mặt bên và đáy là 600.Tính thể tích của hình chóp đã cho.
Câu 8: Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau từng đôi một trong đó nhất thiết phải có mặt 2 chữ số 7,8 và hai chữ số này luôn đứng cạnh nhau.
Câu 9: Cho tam giác ABC có BC=a; CA=b; AB=c. Chứng minh rằng nếu có:
 thì tam giác ABC đều.
ĐỀ 2
Câu 1: Cho hàm số  (Cm)
1)Khảo sát hàm số khi m=2
2)Tìm các giá trị của tham số m để hàm số đạt cực đại, cực tiểu tại các điểm có hoành độ lớn hơn 1. Khi đó viết phương trình đừơng thẳng qua điểm cực đại và cực tiểu của đồ thị hàm số.
Câu 2: Cho phương trình  (1)
Giải phương trình khi m=3
Định m để phương trình (1) có đúng hai nghiệm.
Câu 3: Giải phương trình: 
Câu 4: Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc đừơng thẳng (d): x-y-3=0 có hoành độ , trung điểm 1 cạnh là giao điểm của (d) và trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật.
Câu 5: Giải hệ phương trình 
Câu 6: Trong không gian Oxyz cho mặt phẳng (P): , điểm A(1;1;-2) và đường thẳng ():. Tìm phương trình đừơng thẳng (d) qua A và cắt đừơng thẳng () và song song với mặt phẳng (P).
Câu 7: Tính tích phân I=
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a. SA vuông góc với mặt phẳng (ABCD) và SA=a. Tính khoảng cách giữa đừơng thẳng AC và SD
Câu 9: Chứng minh rằng  thỏa điều kiện  ta có:

ĐỀ 3
Câu 1: Cho hàm số  (Cm)
1)Khảo sát hàm số khi m=1
2)Tìm các giá trị của tham số m để (Cm) cắt trục Ox tại 4 điểm phân biệt có hoành độ lập thành cấp số cộng.
Câu 2: Giải hệ phương trình:

Câu 3: Cho phương trình1)
1)Giải phương trình khi m=
2) Định m để phương trình (1) có đúng 1 nghiệm thuộc 
Câu 4: Trong mặt phẳng Oxy, cho đừơng tròn (C):  và điểm
A(4;-1). Viết phương trình tiếp tuyến của đường tròn (C) qua A và viết phương trình đường thẳng nối các tiếp điểm của các tiếp tuyến trên với (C)
Câu 5: Trong không gian Oxyz, cho mặt phẳng (P):  và điểm A(1;1;1); B(2;-1;0); C(2;3;-1). Tìm điểm M thuộc mặt phẳng (P) sao cho biểu thức  có giá trị nhỏ nhất.
Câu 6: Tính tích phân:
Câu 7: Từ các phần tử của tập A={1,2,3,4,5,6,7,8,9}. Có thể lập được bao nhiêu số tự nhiên gồm 4 phần tử khác nhau từng đôi một? Hãy tính tổng của các số này
Câu 8: Cho hình bình hành ABCD có khoảng cách từ A đến BD bằng a. Trên 2 tia Ax, Cy cùng vuông góc với mặt phẳng (ABCD) và cùng chiều, lần lượt lấy hai điểm M,N. Đặt AM=x, CN=y. Chứng
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Võ Quốc Anh
Dung lượng: 829,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)