30 Bộ đề Toán thi thử ĐH 2011

Chia sẻ bởi Phạm Huỳnh Nam | Ngày 14/10/2018 | 36

Chia sẻ tài liệu: 30 Bộ đề Toán thi thử ĐH 2011 thuộc Tư liệu tham khảo

Nội dung tài liệu:

SỞ GIÁO ĐỤC VÀ ĐÀO TẠO CẦN THƠ ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2011
TRƯỜNG THPT CHUYÊN LÝ TỰ TRỌNG Môn thi: TOÁN, khối A ( B
Thời gian làm bài: 180 phút, không kể thời gian phát đề


I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm):
Câu I (2,0 điểm)
Cho hàm số y = x3 ( (m + 3)x2 + 4mx ( 1 (1)
1. Khảo sát hàm số (1) khi m = 0.
2. Định m để đồ thị hàm số (1) tiếp xúc với đường thẳng y = 7.
Câu II (2,0 điểm)
1. Giải phương trình: cos3x + sin3x = cosx
2. Giải hệ phương trình:

Câu III (1,0 điểm)
Tính: .
Câu IV (1,0 điểm)
ABC là tam giác đều cạnh a. Trên đường thẳng d vuông góc với mặt phẳng (ABC) tại A ta lấy điểm M khác A. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và H là trực tâm tam giác MBC. Đường thẳng OH cắt d tại N. Xác định vị trí của M trên d sao cho tứ diện BCMN có thể tích nhỏ nhất.
Câu V (1,0 điểm)
Cho a, b, c là ba số thực dương. Chứng minh bất đẳng thức:
.
II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B)
A. Theo chương trình Chuẩn.
Câu VI a. (2 điểm)
1.Trong mặt phẳng tọa độ Oxy cho hình thang ABCD có hai đáy là AB và CD. Tìm tọa độ điểm D biết rằng A((2;1), B(3; 5), C(1; (1) và diện tích hình thang bằng .
2.Trong không gian tọa độ Oxyz cho mặt phẳng (P): 2x ( y ( 2z (2 = 0 và đường thẳng (d): . Viết phương trình mặt cầu (S) có tâm I thuộc (d), I cách (P) một khoảng bằng 2 và (P) cắt (S) theo một đường tròn giao tuyến có bán kính bằng 3.
Câu VII a.
Giải phương trình:
B. Theo chương trình Nâng cao:
Câu VI b. (2 điểm)
1. Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 ( 2x ( 4y ( 6 = 0. Gọi (C’) là đường tròn tâm I((2 ; 3) và cắt đường tròn (C) tại hai điểm A, B sao cho AB = 2. Viết phương trình đường thẳng AB.
2. Tính tổng:

Câu VII b.(1 điểm)
Trong không gian với hệ tọa độ Oxyz cho hình lập phương ABCD.A’B’C’D’ với A(0; 0; 0), B(3; 0; 0), D(0; 3; 0) và A’(0; 0; 3).
a. Viết phương trình mặt phẳng (P) chứa đường thẳng AD’ sao cho khoảng cách từ điểm A’ đến mặt phẳng (P) bằng hai lần khoảng cách từ điểm B đến mặt phẳng (P).
b. Tìm tọa độ điểm M thuộc đường thẳng A’C sao cho .

((((((((((Hết((((((((((((
WWW.VNMATH.COM




TRUNG TÂM LUYỆN THI ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2011
THPT CHUYÊN LÝ TỰ TRỌNG Môn thi: TOÁN, khối B ( D
Thời gian làm bài: 180 phút, không kể thời gian phát đề


PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm):
Câu I (2,0 điểm)
Cho hàm số y = x4 ( 6x2 + 5 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1).
2. Định m để phương trình: x4 ( 6x2 (log2 m = 0 có 4 nghiệm thực phân biệt.
Câu II (2,0 điểm)
1. Giải phương trình: sin5x + sin9x + 2sin2x ( 1 = 0
2. Giải hệ phương trình:

Câu III (1,0 điểm)
Tính: .
Câu IV (1,0 điểm)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là một tam giác đều và nằm trên mặt phẳng vuông
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Huỳnh Nam
Dung lượng: 431,28KB| Lượt tài: 0
Loại file: zip
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)