200 pt lượng giác
Chia sẻ bởi Nguyễn Ngọc Lợi |
Ngày 14/10/2018 |
42
Chia sẻ tài liệu: 200 pt lượng giác thuộc Tư liệu tham khảo
Nội dung tài liệu:
a/kiến thức cần nhớ và phân loại bài toán
dạng 1 Phương trình bậc nhất và bậc hai , bậc cao với 1 hàm số lượng giác
Đặt HSLG theo t với sinx , cosx có điều kiện 1
Giải phương trình ……….theo t
Nhận t thoả mãn điều kiện giải Pt lượng giác cơ bản
Giải phương trình:
1/ 2/ 4sin3x+3sin2x=8sinx
3/ 4cosx.cos2x +1=0 4/
5/ Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1) và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm n0 của (1) đồng thời là n0 của (2) ( nghiệm chung sinx
6/ sin3x+2cos2x-2=0 7/ a/ tanx-2 = 0 b tanx=7
c* / sin6x+cos4x=cos2x
8/sin3cos1+2sinx 9
10/ cos2x+5sinx+2=0 11/ tanx+cotx=4 12/
1314/ cos2x+3cosx+2=0
1516/ 2cosx-=1
dạng 2: Phương trình bậc nhất đối với sinx và cosx : asinx+bcosx=c
Cách 1: asinx+bcosx=c
Đặt cosx; sinx=
Cách : 2
Đặt
Cách 3: Đặt ta có
Đăc biệt :
Điều kiện Pt có nghiệm :
giải phương trình :
1/ 2sin15xcos5x+sin5x=k với k=0 và k=4 với k=0
2/ a : b:
c:
3/ *tìm nghiệm
4/( cos2x-sin2x)- sinx-cosx+4=0 5/
6/
Dạng 3 Phương trình đẳng cấp đối với sin x và cosx
Đẳng cấp bậc 2: asin2x+bsinx.cosx+c cos2x=0
Cách 1: Thử với cosx=0 Với cosx0 .Chia 2 vế cho cos2x ta được:
atan2x+btanx +c=d(tan2x+1)
Cách2: áp dụng công thức hạ bậc
Đẳng cấp bậc 3: asin3x+b.cos3x+c(sinx+ cosx)=0 hoặc
asin3x+b.cos3x+csin2xcosx+dsinxcos2x=0
Xét cos3x=0 và cosx0 Chia 2 vế cho cos2x ta được Pt bậc 3 đối với tanx
Giải phương trình
1/a/ 3sin2x- sinxcosx+2cos2x cosx=2 b/ 4 sin2x+3sinxcosx-2cos2x=4
c/3 sin2x+5 cos2x-2cos2x-4sin2x=0 d/ 2 sin2x+6sinxcosx+2(1+ )cos2x-5-=0
2/ sinx- 4sin3x+cosx=0 2 cách +/ (tanx -1)(3tan2x+2tanx+1)=0
+ sin3x- sinx+ cosx- sinx=0 cosx- sinx)(2sinxcosx+2sin2x+1)=0
3/ tanx sin2x-2sin2x=3(cos2x+sinxcosx)
4/ 3cos4x-4sin2xcos2x+sin4x=0 5/ 4cos3x+2sin3x-3sinx=0
6/ 2 cos3x= sin3x 7/ cos3x- sin3x= cosx+ sinx
8/ sinx sin2x+ sin3x=6 cos3x 9/sin3(x4sinx
Dang 4 Phương trình vế trái đối xứng đối với sinx và cosx
* a(sin x+cosx)+bsinxcosx=c đặt t= sin x+cosx
at + bc bt2+2at-2c-b=0
* a(sin x- cosx)+bsinxcosx=c đặt t= sin x- cosx
at + bc bt2 -2at+2c-b=0
Giải phương trình
1/ a/1+tanx=2sinx + b/ sin x+cosx
2/ sin3x+cos3x=2sinxcosx+sin x+cosx 3/ 1- sin3x+cos3x= sin2x
4/ 2sinx+cotx=2 sin2x+1 5sin2x(sin x+cosx)=2
6/ (1
dạng 1 Phương trình bậc nhất và bậc hai , bậc cao với 1 hàm số lượng giác
Đặt HSLG theo t với sinx , cosx có điều kiện 1
Giải phương trình ……….theo t
Nhận t thoả mãn điều kiện giải Pt lượng giác cơ bản
Giải phương trình:
1/ 2/ 4sin3x+3sin2x=8sinx
3/ 4cosx.cos2x +1=0 4/
5/ Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1) và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm n0 của (1) đồng thời là n0 của (2) ( nghiệm chung sinx
6/ sin3x+2cos2x-2=0 7/ a/ tanx-2 = 0 b tanx=7
c* / sin6x+cos4x=cos2x
8/sin3cos1+2sinx 9
10/ cos2x+5sinx+2=0 11/ tanx+cotx=4 12/
1314/ cos2x+3cosx+2=0
1516/ 2cosx-=1
dạng 2: Phương trình bậc nhất đối với sinx và cosx : asinx+bcosx=c
Cách 1: asinx+bcosx=c
Đặt cosx; sinx=
Cách : 2
Đặt
Cách 3: Đặt ta có
Đăc biệt :
Điều kiện Pt có nghiệm :
giải phương trình :
1/ 2sin15xcos5x+sin5x=k với k=0 và k=4 với k=0
2/ a : b:
c:
3/ *tìm nghiệm
4/( cos2x-sin2x)- sinx-cosx+4=0 5/
6/
Dạng 3 Phương trình đẳng cấp đối với sin x và cosx
Đẳng cấp bậc 2: asin2x+bsinx.cosx+c cos2x=0
Cách 1: Thử với cosx=0 Với cosx0 .Chia 2 vế cho cos2x ta được:
atan2x+btanx +c=d(tan2x+1)
Cách2: áp dụng công thức hạ bậc
Đẳng cấp bậc 3: asin3x+b.cos3x+c(sinx+ cosx)=0 hoặc
asin3x+b.cos3x+csin2xcosx+dsinxcos2x=0
Xét cos3x=0 và cosx0 Chia 2 vế cho cos2x ta được Pt bậc 3 đối với tanx
Giải phương trình
1/a/ 3sin2x- sinxcosx+2cos2x cosx=2 b/ 4 sin2x+3sinxcosx-2cos2x=4
c/3 sin2x+5 cos2x-2cos2x-4sin2x=0 d/ 2 sin2x+6sinxcosx+2(1+ )cos2x-5-=0
2/ sinx- 4sin3x+cosx=0 2 cách +/ (tanx -1)(3tan2x+2tanx+1)=0
+ sin3x- sinx+ cosx- sinx=0 cosx- sinx)(2sinxcosx+2sin2x+1)=0
3/ tanx sin2x-2sin2x=3(cos2x+sinxcosx)
4/ 3cos4x-4sin2xcos2x+sin4x=0 5/ 4cos3x+2sin3x-3sinx=0
6/ 2 cos3x= sin3x 7/ cos3x- sin3x= cosx+ sinx
8/ sinx sin2x+ sin3x=6 cos3x 9/sin3(x4sinx
Dang 4 Phương trình vế trái đối xứng đối với sinx và cosx
* a(sin x+cosx)+bsinxcosx=c đặt t= sin x+cosx
at + bc bt2+2at-2c-b=0
* a(sin x- cosx)+bsinxcosx=c đặt t= sin x- cosx
at + bc bt2 -2at+2c-b=0
Giải phương trình
1/ a/1+tanx=2sinx + b/ sin x+cosx
2/ sin3x+cos3x=2sinxcosx+sin x+cosx 3/ 1- sin3x+cos3x= sin2x
4/ 2sinx+cotx=2 sin2x+1 5sin2x(sin x+cosx)=2
6/ (1
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Ngọc Lợi
Dung lượng: 484,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)