17 đề ôn thi tốt nghiệp toán
Chia sẻ bởi Phạm Huỳnh Nam |
Ngày 14/10/2018 |
27
Chia sẻ tài liệu: 17 đề ôn thi tốt nghiệp toán thuộc Tư liệu tham khảo
Nội dung tài liệu:
ĐỀ SỐ 1 :
I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (3, 0 điểm)
Cho hàm số
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm tất cả các giá trị của tham số m để đường thẳng y = (m2 + 2)x + m song song với tiếp tuyến của đồ thị (C) tại giao điểm của đồ thỉ (C) với trục tung.
Câu II (3, 0 điểm)
1 Giải phương trình:
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x(ln x - 2) trên đoạn [l; e2].
3. Tính:
Câu III (1,0 điểm)
Cho khối lăng trụ đứng ABC.A1B1C1 có đáy là tam giác ABC vuông cân tại A và BC = a. Đường
chéo của mặt bên ABB1A1 tạo với đáy góc 60o. Tính thể tích khối lăng trụ đó theo a.
II PHẦN RIÊNG (3,0 điểm).
Thí sinh học theo chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc 2)
1 Theo chương trình chuẩn:
Câu IV.a (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm: A(1 ; 2; -1), B(2; 0; 1) và mặt phẳng (P) có phương trình 2x - y + 3z + 1 = 0.
1. Viết phương trình đường thẳng AB.
2. Tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P).
Câu V.a (1.0 điểm)
Tìm phần thực, phần ảo của số phức z = (2 - i)3.
2. Theo chương trình nâng cao:
Câu IV.b (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm: A(1 ; 2; - 1), B(2; 0; 1) và mặt phẳng (P) có phương trình 2x - y + 3z + 1 = 0.
1. Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).
2. Viết phương trình mặt phẳng (R) chứa đường thẳng AB và vuông góc với mặt phẳng (P).
Câu V.b (1,0 điểm)
Thực hiện phép tính: .
ĐỀ SỐ 2
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH :(7 điểm)
Câu 1: (3điểm)
Chohàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số .
Viết phương trình tiếp tuyến tại điểm cực tiểu.
Câu 2: (3điểm)
Giải phương trình:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0;2].
Tính tích phân:
Câu 3: (1điểm)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy là a; góc giữa cạnh bên và đáy là . Tính thể tích khối chóp theo a ?
PHẦN RIÊNG: (3điểm)
Thí sinh học theo chương trình nào chỉ được làm theo phần riêng cho chương trình đó ( phần 1 hoặc phần 2).
Theo chương trình chuẩn:
Câu IVa: Trong không gian với hệ tọa độ Oxyz, cho điểm B(-1;2;-3) và mặt phẳng
Tính khoảng cách từ điểm B đến mặt phẳng .
Viết phương trình tham số của đường thẳng đi qua B, và vuông góc với mặt phẳng .
CâuVb: Giải phương trình trên tập số phức
2.Theo chương trình nâng cao.
Câu IVa: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d:
Viếtphương trình mặt phẳng (Q) chứa điểm M và qua đường thẳng d.
Viết phương trình chính tắc của đường thẳng (d`) là hình chiếu của (d) lên mặt phẳng (P).
Câu Vb: Tìm phần thực và phần ảo của số phức
ĐỀ SỐ 3 :
I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (3,0 điểm)
Cho hàm số
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Lập phương trình đường thẳng đi qua điềm cực đại của đồ thị (C) và vuông góc với tiếp tuyến của đồ thị (C) tại gốc tọa độ.
Câu II (3, 0 điểm)
1 Giải phương trình:
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: trên
I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (3, 0 điểm)
Cho hàm số
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm tất cả các giá trị của tham số m để đường thẳng y = (m2 + 2)x + m song song với tiếp tuyến của đồ thị (C) tại giao điểm của đồ thỉ (C) với trục tung.
Câu II (3, 0 điểm)
1 Giải phương trình:
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x(ln x - 2) trên đoạn [l; e2].
3. Tính:
Câu III (1,0 điểm)
Cho khối lăng trụ đứng ABC.A1B1C1 có đáy là tam giác ABC vuông cân tại A và BC = a. Đường
chéo của mặt bên ABB1A1 tạo với đáy góc 60o. Tính thể tích khối lăng trụ đó theo a.
II PHẦN RIÊNG (3,0 điểm).
Thí sinh học theo chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc 2)
1 Theo chương trình chuẩn:
Câu IV.a (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm: A(1 ; 2; -1), B(2; 0; 1) và mặt phẳng (P) có phương trình 2x - y + 3z + 1 = 0.
1. Viết phương trình đường thẳng AB.
2. Tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P).
Câu V.a (1.0 điểm)
Tìm phần thực, phần ảo của số phức z = (2 - i)3.
2. Theo chương trình nâng cao:
Câu IV.b (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm: A(1 ; 2; - 1), B(2; 0; 1) và mặt phẳng (P) có phương trình 2x - y + 3z + 1 = 0.
1. Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).
2. Viết phương trình mặt phẳng (R) chứa đường thẳng AB và vuông góc với mặt phẳng (P).
Câu V.b (1,0 điểm)
Thực hiện phép tính: .
ĐỀ SỐ 2
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH :(7 điểm)
Câu 1: (3điểm)
Chohàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số .
Viết phương trình tiếp tuyến tại điểm cực tiểu.
Câu 2: (3điểm)
Giải phương trình:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0;2].
Tính tích phân:
Câu 3: (1điểm)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy là a; góc giữa cạnh bên và đáy là . Tính thể tích khối chóp theo a ?
PHẦN RIÊNG: (3điểm)
Thí sinh học theo chương trình nào chỉ được làm theo phần riêng cho chương trình đó ( phần 1 hoặc phần 2).
Theo chương trình chuẩn:
Câu IVa: Trong không gian với hệ tọa độ Oxyz, cho điểm B(-1;2;-3) và mặt phẳng
Tính khoảng cách từ điểm B đến mặt phẳng .
Viết phương trình tham số của đường thẳng đi qua B, và vuông góc với mặt phẳng .
CâuVb: Giải phương trình trên tập số phức
2.Theo chương trình nâng cao.
Câu IVa: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d:
Viếtphương trình mặt phẳng (Q) chứa điểm M và qua đường thẳng d.
Viết phương trình chính tắc của đường thẳng (d`) là hình chiếu của (d) lên mặt phẳng (P).
Câu Vb: Tìm phần thực và phần ảo của số phức
ĐỀ SỐ 3 :
I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (3,0 điểm)
Cho hàm số
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Lập phương trình đường thẳng đi qua điềm cực đại của đồ thị (C) và vuông góc với tiếp tuyến của đồ thị (C) tại gốc tọa độ.
Câu II (3, 0 điểm)
1 Giải phương trình:
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: trên
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Huỳnh Nam
Dung lượng: 429,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)