10 de thi thu TN nam 2009
Chia sẻ bởi Phạm Xuân Hải Ngoại |
Ngày 14/10/2018 |
59
Chia sẻ tài liệu: 10 de thi thu TN nam 2009 thuộc Tư liệu tham khảo
Nội dung tài liệu:
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàm số : y = – x3 + 3mx – m có đồ thị là ( Cm ) .
1.Tìm m để hàm số đạt cực tiểu tại x = – 1.
2.Khảo sát hàm số ( C1 ) ứng với m = – 1 .
Câu 2(3 điểm).
1.Tính tích phân .
2. Giải phương trình trên tập số phức .
3. Tính
Câu 3 ( 1 điểm ) Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây cung AB của đáy bằng a , , . Tính độ dài đường sinh theo a .
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4 ( 2 điểm ).
Cho D(-3;1;2) và mặt phẳng () qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8).
1.Viết phương trình tổng quát của mặt phẳng ()
2.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt ()
Câu 4 ( 1 điểm )
Xác định tập hợp các điểm biểu diển số phức Z trên mặt phẳng tọa độ thỏa mãn điều kiện :
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số
1.Tìm m để hàm số có cực đại và cực tiểu
2.Khảo sát và vẽ đồ thị hàm số khi m = 3.
Câu 2(2 điểm).
1.Tính tích phân : I = .
2. Giải bất phương trình : .
Câu 3(). Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 600. Tính thể tích của khối chóp SABCD theo a.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4. ( 2 điểm ).
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng ,
a. Chứng minh rằng đường thẳng và đường thẳng chéo nhau .
b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng và song song với đường thẳng .
Câu 5 ( 1 điểm ):
Giải phương trình trên tập số phức .
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàn số y = x3 + 3x2 + 1.
1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số .
2).Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m :
x3 + 3x2 + 1 = .
Câu 2(2 điểm).
1. Tính tích phân : .
2. Giải phương trình : .
Câu 3(). Cho hình nón có bán kính đáy là R,đỉnh S .Góc tạo bởi đường cao và đường sinh là 600.
Tính diện tích xung quanh của mặt nón và thể tích của khối nón.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4.a ( 2 điểm ).
Trong không gian Oxyz cho 2 điểm A(5;-6;1) và B(1;0;-5)
1. Viết phương trình chính tắc của đường thẳng () qua B có véctơ chỉ phương (3;1;2). Tính cosin góc giữa hai đường thẳng AB và ()
2. Viết phương trình mặt phẳng (P) qua A và chứa ()
Câu 5(1điểm) .Tính thể tìch các hình tròn xoay do các hình phẳng giới hạn bởi các đường sau đây quay quanh trục Ox : y = - x2 + 2x và y = 0
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàm số có đồ thị (C)
1. Khảo sát và vẽ đồ thị (C)
2. Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng (d) x-9y+3=0
Câu 2(2 điểm).
1. Tính tích phân : I = .
2.Giải phương trình : .
Câu 3
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàm số : y = – x3 + 3mx – m có đồ thị là ( Cm ) .
1.Tìm m để hàm số đạt cực tiểu tại x = – 1.
2.Khảo sát hàm số ( C1 ) ứng với m = – 1 .
Câu 2(3 điểm).
1.Tính tích phân .
2. Giải phương trình trên tập số phức .
3. Tính
Câu 3 ( 1 điểm ) Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây cung AB của đáy bằng a , , . Tính độ dài đường sinh theo a .
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4 ( 2 điểm ).
Cho D(-3;1;2) và mặt phẳng () qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8).
1.Viết phương trình tổng quát của mặt phẳng ()
2.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt ()
Câu 4 ( 1 điểm )
Xác định tập hợp các điểm biểu diển số phức Z trên mặt phẳng tọa độ thỏa mãn điều kiện :
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số
1.Tìm m để hàm số có cực đại và cực tiểu
2.Khảo sát và vẽ đồ thị hàm số khi m = 3.
Câu 2(2 điểm).
1.Tính tích phân : I = .
2. Giải bất phương trình : .
Câu 3(). Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 600. Tính thể tích của khối chóp SABCD theo a.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4. ( 2 điểm ).
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng ,
a. Chứng minh rằng đường thẳng và đường thẳng chéo nhau .
b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng và song song với đường thẳng .
Câu 5 ( 1 điểm ):
Giải phương trình trên tập số phức .
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàn số y = x3 + 3x2 + 1.
1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số .
2).Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m :
x3 + 3x2 + 1 = .
Câu 2(2 điểm).
1. Tính tích phân : .
2. Giải phương trình : .
Câu 3(). Cho hình nón có bán kính đáy là R,đỉnh S .Góc tạo bởi đường cao và đường sinh là 600.
Tính diện tích xung quanh của mặt nón và thể tích của khối nón.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4.a ( 2 điểm ).
Trong không gian Oxyz cho 2 điểm A(5;-6;1) và B(1;0;-5)
1. Viết phương trình chính tắc của đường thẳng () qua B có véctơ chỉ phương (3;1;2). Tính cosin góc giữa hai đường thẳng AB và ()
2. Viết phương trình mặt phẳng (P) qua A và chứa ()
Câu 5(1điểm) .Tính thể tìch các hình tròn xoay do các hình phẳng giới hạn bởi các đường sau đây quay quanh trục Ox : y = - x2 + 2x và y = 0
đề thi thử tôt nghiệp
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(3 điểm).
Cho hàm số có đồ thị (C)
1. Khảo sát và vẽ đồ thị (C)
2. Viết phương trình tiếp tuyến của (C) vuông góc với đường thẳng (d) x-9y+3=0
Câu 2(2 điểm).
1. Tính tích phân : I = .
2.Giải phương trình : .
Câu 3
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Xuân Hải Ngoại
Dung lượng: 104,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)