Ung dung cua bat dang thuc co si
Chia sẻ bởi Lê Quí Hùng |
Ngày 13/10/2018 |
39
Chia sẻ tài liệu: Ung dung cua bat dang thuc co si thuộc Đại số 9
Nội dung tài liệu:
Một Số ứNG DụNG CủA BấT ĐẳNG THứC CÔ SI
ứNG DụNG 1: Chứng minh bất đẳng thức
Bài toán số 1. Cho a, b, c > 0. Chứng minh rằng
*Phân tích:
Vế trái chứa a, b, c > 0 và các nghịch đảo của chúng. Vì vậy ta nghĩ đến việc dùng bất đẳng thức Côsi.
Lời giải:
Cách 1: áp dụng bất đẳng thức Côsi cho các bộ số a, b, c và
ta có:
Nhân từng vế của hai bất đẳng thức trên ta được:
(đpcm).
Cách 2:
Dấu "=" xảy ra
Bài toán số 1.1 Chứng minh các bất đẳng thức:
a. (a, b, c > 0)
b
Bài toán số 1.2 Chứng minh rằng:
a
áp dụng BĐT Côsi cho 2 số x2 +1 và 1.
b1.
áp dụng BĐT Côsi cho 2 số x - 1 và 9.
c
áp dụng BĐT Côsi ta có
Nhân từng vế của 2 BĐT trên ta suy được đpcm.
Bài toán số 1.3 Chứng minh rằng:
a.
b
áp dụng BĐT Côsi cho 6 số
Bài toán số 1.4
a. n số dương a1, a2, ..., an. Chứng minh rằng:
b.Nếu a1, a2,...., an dương và a1a2...an = 1 thì a1+ a2 +...+ an
áp dụng BĐT Côsi cho n số dương trên)
Bài toán số 2. Chứng minh bất đẳng Netbit
> 0.
Giải.
Đặt x= b + c, y = a + c, z = a +b
Khi đó x, y, z > 0 và
Ta có:
Dấu "=" xảy ra khi và chỉ khi x= y= z.
Cách khác:
Khai thác bài toán:
Bằng cách tương tự, ta có thể chứng minh được các bất đẳng thức sau: với a, b, c dương ta có:
Bài toán số 2.2. Cho x, y > 0. Chứng minh rằng (1)
Phân tích:
Do x, y > 0 nên BĐT (1) có thể suy ra từ BĐT Côsi hoặc xét hiệu.
Giải
Cách 1: Sử dụng BĐT Côsic cho 2 số dương x, y:
Cách 2. Xét hiệu của 2 vế:
(2)
Do x > 0, y > 0 nên BĐT (2) luôn đúng.
Vậy (1) luôn đúng. (đpcm)
Khai thác bài toán:
Ta thấy BĐT trên có liên quan đến việc cộng mẫu nên có thể sử dụng để chứng minh BĐT sau:
Cho a, b, c là độ dài 3 cạnh của một tam giác, chứng minh rằng:
trong đó
Bài tập tương tự:
Bài 1. Chứng minh rằng:
Bài 2. Cho a, b, c, d là các số dương. Chứng minh rằng:
Bài 3. Cho . Chứng minh rằng:
Bài 4. Cho a > 0, b > 0, c > 0. Chứng minh:
Bài 5. Cho x, y, z > 0. Chứng minh rằng:
Bài 6. Cho a, b > 0. Chứng minh rằng:
Bài 7. Cho x, y > 0. Chứng minh rằng:
Bài 8. Cho x, y ≠ 0. Chứng minh rằng:
Bài 9. Cho a, b > 0. Chứng minh rằng:
áp dụng bất đẳng thức Côsi để chứng
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Quí Hùng
Dung lượng: 583,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)