Tuyen tap de thi hsg khoi 9
Chia sẻ bởi Lê Xuân Thường |
Ngày 14/10/2018 |
45
Chia sẻ tài liệu: tuyen tap de thi hsg khoi 9 thuộc Đại số 9
Nội dung tài liệu:
Đề số 1
Thời gian: 150 phút
Câu I. ( 4 điểm). Giải phương trình
1
2. y2 – 2y + 3
Câu II. (4 điểm)
1. Cho biểu thức :
A =
Tìm giá trị nhỏ nhất của biểu thức A.
2. Cho a>0; b>0; c>0
Chứng minh bất đẳng thức ( a+b+c
Câu III. (4,5 điểm)
1. Giải bài toán bằng cách lập phương trình.
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
2. Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Câu IV (4 điểm)
Cho hình thang cân ABCD, (AB//CD; AB > CD). Hai đường chéo AC và BD cắt nhau tại I. Góc ACD = 600; gọi E; F; M lần lượt là trung điểm của các đoạn thẳng IA; ID; BC.
Chứng minh tứ giác BEFC nội tiếp được trong một đường tròn.
Chứng minh tam giác MEF là tam giác đều.
Câu V. (3,5 điểm)
Cho hình chóp tam giác đều S. ABC có các mặt là tam giác đều. Gọi O là trung điểm của đường cao SH của hình chóp.
Chứng minh rằng
Đề số 2
Bài 1 (2đ):
1. Cho biểu thức:
A =
a. Rút gọn biểu thức.
b. Cho Tìm Max A.
2. Chứng minh rằng với mọi số nguyên dương n ta có:
từ đó tính tổng:
S =
Bài 2 (2đ): Phân tích thành nhân tử: A = (xy + yz + zx) (x + y+ z) – xyz
Bài 3 (2đ):
1. Tìm giá trị của a để phương trình sau chỉ có 1 nghiệm:
Thời gian: 150 phút
Câu I. ( 4 điểm). Giải phương trình
1
2. y2 – 2y + 3
Câu II. (4 điểm)
1. Cho biểu thức :
A =
Tìm giá trị nhỏ nhất của biểu thức A.
2. Cho a>0; b>0; c>0
Chứng minh bất đẳng thức ( a+b+c
Câu III. (4,5 điểm)
1. Giải bài toán bằng cách lập phương trình.
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
2. Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Câu IV (4 điểm)
Cho hình thang cân ABCD, (AB//CD; AB > CD). Hai đường chéo AC và BD cắt nhau tại I. Góc ACD = 600; gọi E; F; M lần lượt là trung điểm của các đoạn thẳng IA; ID; BC.
Chứng minh tứ giác BEFC nội tiếp được trong một đường tròn.
Chứng minh tam giác MEF là tam giác đều.
Câu V. (3,5 điểm)
Cho hình chóp tam giác đều S. ABC có các mặt là tam giác đều. Gọi O là trung điểm của đường cao SH của hình chóp.
Chứng minh rằng
Đề số 2
Bài 1 (2đ):
1. Cho biểu thức:
A =
a. Rút gọn biểu thức.
b. Cho Tìm Max A.
2. Chứng minh rằng với mọi số nguyên dương n ta có:
từ đó tính tổng:
S =
Bài 2 (2đ): Phân tích thành nhân tử: A = (xy + yz + zx) (x + y+ z) – xyz
Bài 3 (2đ):
1. Tìm giá trị của a để phương trình sau chỉ có 1 nghiệm:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Xuân Thường
Dung lượng: 892,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)