Tuyển sinh Toán vào 10 tp HCM(2007-2012

Chia sẻ bởi Ngô Tùng Toại | Ngày 13/10/2018 | 35

Chia sẻ tài liệu: Tuyển sinh Toán vào 10 tp HCM(2007-2012 thuộc Đại số 9

Nội dung tài liệu:

Các đề tuyển sinh 10 của TP HỒ CHÍ MINH
Từ 2007_2008 đến 2011_2012

KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2007-2008 KHÓA NGÀY 20-6-2007 MÔN THI: TOÁN
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Câu 1: (1, 5 điểm) Giải các phương trình và hệ phương trình sau:
a) x2 – 2x + 4 = 0 b) x4 – 29x2 + 100 = 0 c) 
Câu 2: (1, 5 điểm) Thu gọn các biểu thức sau:
a)  b)
Câu 3: (1 điểm) Một khu vườn hình chữ nhật có diện tích bằng 675 m2 và có chu vi bằng 120 m. Tìm chiều dài và chiều rộng của khu vườn. Câu 4: (2 điểm) Cho phương trình x2 – 2mx + m2 – m + 1 = 0 với m là tham số và x là ẩn số.
a) Giải phương trình với m = 1. b) Tìm m để phương trình có hai nghiệm phân biệt x1 ,x2. c) Với điều kiện của câu b hãy tìm m để biểu thức A = x1 x2 - x1 - x2 đạt giá trị nhỏ nhất.
Câu 5: (4 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắt CE tại H và AH cắt BC tại D.
a) Chứng minh tứ giác BEFC nội tiếp và AH vuông góc với BC. b) Chứng minh AE.AB = AF.AC. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm của BC. Tính tỉ số khi tứ giác BHOC nội tiếp. d) Cho HF = 3 cm, HB = 4 cm, CE = 8 cm và HC > HE. Tính HC.

Gợi ý một phương án bài giải đề thi tuyển sinh lớp 10 THPT Năm học 2007-2008
Câu 1:
a) Ta có Δ’ = 1 nên phương trình có 2 nghiệm phân biệt là x1 = 5 – 1 và x2 = 5 + 1. b) Đặt t = x2 ≥ 0, ta được phương trình trở thành t2 – 29t + 100 = 0 t = 25 hay t =2. * t = 25 x2 = 25 x = ± 5. * t = 4 x2 = 4 x = ± 2. Vậy phương trình đã cho có 4 nghiệm là ± 2; ±5. c)
Câu 2:
a)  b) 
Câu 3:
Gọi chiều dài là x (m) và chiều rộng là y (m) (x > y > 0). Theo đề bài ta có:  Ta có: (*) x2 – 60x + 675 = 0 x = 45 hay x = 15. Khi x = 45 thì y = 15 (nhận) Khi x = 15 thì y = 45 (loại) Vậy chiều dài là 45(m) và chiều rộng là 15 (m)
Câu 4:
Cho phương trình x2 – 2mx + m2 – m + 1 = 0 (1) a) Khi m = 1 thì (1) trở thành: x2 – 2x + 1 = 0 (x – 1)2 = 0 x = 1. b) (1) có hai nghiệm phân biệt x1, x2 Δ’ = m – 1 > 0 m > 1. Vậy (1) có hai nghiệm phân biệt x1, x2 m > 1. c) Khi m > 1 ta có: S = x1 + x2 = 2m và P = x1x2 = m2 – m + 1 Do đó: A = P – S = m2 – m + 1 – 2m = m2 – 3m + 1 = Dấu “=” xảy ra m= (thỏa điều kiện m > 1) Vậy khi m = thì A đạt giá trị nhỏ nhất và GTNN của A là –.
Câu 5:
* Ta có E, F lần lượt là giao điểm của AB, AC với đường tròn đường kính BC. Tứ giác BEFC nội tiếp đường tròn đường kính BC. * Ta có (góc nội tiếp chắn nửa đường tròn) BF, CE là hai đường cao của ΔABC. H là trực tâm của Δ ABC.


 AH vuông góc với BC. b) Xét Δ AEC và Δ AFB có: chung và  Δ AEC đồng dạng với Δ AFB  c) Khi BHOC nội tiếp ta có: mà và (do AEHF nội tiếp)   Ta có: K là trung điểm của BC, O
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Ngô Tùng Toại
Dung lượng: 770,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)