TUYỂN SINH TOÁN 10 (GIA LAI 2012)

Chia sẻ bởi Hải Nguyên Văn | Ngày 13/10/2018 | 37

Chia sẻ tài liệu: TUYỂN SINH TOÁN 10 (GIA LAI 2012) thuộc Đại số 9

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
GIA LAI
Đề chính thức
Ngày thi: 26/6/2012
KỲ THI TUYỂN SINH VÀO LỚP 10 CHUYÊN
Năm học 2012 – 2013
Môn thi: Toán (không chuyên)
Thời gian làm bài: 120 phút



Câu 1. (2,0 điểm)
Cho biểu thức , với 
a. Rút gọn biểu thức Q
b. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên.

Câu 2. (1,5 điểm)
Cho phương trình , với x là ẩn số, 
a. Giải phương trình đã cho khi m ( – 2
b. Giả sử phương trình đã cho có hai nghiệm phân biệt  và . Tìm hệ thức liên hệ giữa  và  mà không phụ thuộc vào m.

Câu 3. (2,0 điểm)
Cho hệ phương trình , với 
a. Giải hệ đã cho khi m ( –3
b. Tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó.

Câu 4. (2,0 điểm)
Cho hàm số  có đồ thị (P). Gọi d là đường thẳng đi qua điểm M(0;1) và có hệ số góc k.
a. Viết phương trình của đường thẳng d
b. Tìm điều kiện của k để đt d cắt đồ thị (P) tại hai điểm phân biệt.

Câu 5. (2,5 điểm)
Cho tam giác nhọn ABC (AB < AC < BC) nội tiếp trong đường tròn (O). Gọi H là giao điểm của hai đường cao BD và CE của tam giác ABC 
a. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn
b. Gọi I là điểm đối xứng với A qua O và J là trung điểm của BC. Chứng minh rằng ba điểm H, J, I thẳng hàng
c. Gọi K, M lần lượt là giao điểm của AI với ED và BD. Chứng minh rằng 








Giải
Câu 1.


a. 




Vậy 


b.
Q nhận qía trị nguyên

 khi  khi 2 chia hết cho 
 đối chiếu điều kiện thì 


Câu 2. Cho pt , với x là ẩn số, 
a. Giải phương trình đã cho khi m ( – 2
Ta có phương trình 


Vậy phương trinh có hai nghiệm  và 


b.
Theo Vi-et, ta có 
Khử tham số m

Suy ra 


Câu 3. Cho hệ phương trình , với 
a. Giải hệ đã cho khi m ( –3
Ta được hệ phương trình 

Vậy hệ phương trình có nghiệm  với 


b. Điều kiện có nghiệm của phương trình



Vậy phương trình có nghiệm khi  và 
Giải hệ phương trình  khi 
 . Vậy hệ có nghiệm (x; y) với 


Câu 4.
a. Viết phương trình của đường thẳng d
Đường thẳng d với hệ số góc k có dạng 
Đường thẳng d đi qua điểm M(0; 1) nên 
Vậy 


b.
Phương trình hoành độ giao điểm của (P) và d
, có 
d cắt (P) tại hai điểm phân biệt khi 



Câu 5.
a. BCDE nội tiếp

Suy ra BCDE nội tiếp đường tròn đường kính BC




b. H, J, I thẳng hàng
IB ( AB; CE ( AB (CH ( AB)
Suy ra IB // CH
IC ( AC; BD ( AC (BH ( AC)
Suy ra BH // IC
Như vậy tứ giác BHCI là hình bình hành
J trung điểm BC ( J trung điểm IH
Vậy H, J, I thẳng hàng


c. 
 cùng bù với góc  của tứ giác nội tiếp BCDE
 vì (ABI vuông tại B
Suy ra  , hay 
Suy ra (AEK vuông tại K
Xét (ADM vuông tại M (suy từ giả thiết)
DK ( AM (suy từ chứng minh trên)www.VNMATH.com
Như vậy 




* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Hải Nguyên Văn
Dung lượng: 386,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)