TUYỂN SINH LỚP 10 THÀNH PHỐ HỒ CHÍ MINH 11-12.doc

Chia sẻ bởi Nguyễn Thanh Vinh | Ngày 13/10/2018 | 37

Chia sẻ tài liệu: TUYỂN SINH LỚP 10 THÀNH PHỐ HỒ CHÍ MINH 11-12.doc thuộc Đại số 9

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG THÀNH PHỐ HỒ CHÍ MINH Khóa ngày 21 tháng 6 năm 2011



ĐỀ CHÍNH THỨC MÔN THI: TOÁN
Thời gian :120 phút (không tính thời gian giao đề)

Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau:
a)  b)  c)  d) 
Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) của hàm số  và đường thẳng (D):  trên cùng một hệ trục toạ độ.
b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1,5 điểm) Thu gọn các biểu thức sau:
 ,  
Bài 4: (1,5 điểm) Cho phương trình  (x là ẩn số)
Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
Gọi x1, x2 là các nghiệm của phương trình.
Tìm m để biểu thức A = . đạt giá trị nhỏ nhất
Bài 5: (3,5 điểm)
Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).
Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân
Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.
Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID

* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thanh Vinh
Dung lượng: 43,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)