Tong hop Cac bai Toan Cuc Tri trong cac Ki thi HSG MonToan 9 THCS.doc

Chia sẻ bởi Nguyễn Thanh Vinh | Ngày 13/10/2018 | 35

Chia sẻ tài liệu: Tong hop Cac bai Toan Cuc Tri trong cac Ki thi HSG MonToan 9 THCS.doc thuộc Đại số 9

Nội dung tài liệu:

Các bài Toán cực trị trong các kì thi HSG Toán 9
A. Bài tập.

Bài 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
A =  với .
(Đề thi chọn HSG Toán 9, tỉnh Khánh Hoà năm học 1987 – 1988)
Bài 2. Cho P . Hãy tìm giá trị nguyên dương của x, y, z để cho P đạt giá trị dương nhỏ nhất.
(Đề thi chọn HSG Toán 9, toàn quốc năm học 1988 – 1989)
Bài 3. Cho A . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1989 – 1990)
Bài 4. Cho hàm số . Tìm giá trị nhỏ nhất của y và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1990 – 1991)

Bài 5. Cho M . Tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1991 – 1992)
Bài 6. Tìm giá trị nguyên lớn nhất của m sao cho bất đẳng thức sau đây luôn luôn đúng với mọi số thực x:
A = 
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y .
(Đề thi chọn HSG Toán 9, Quận 6, TP. HCM năm học 1992 – 1993)
Bài 8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của y , với 
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 9. Cho ba số dương x, y, z thoả mãn điều kiện: . Tìm giá trị lớn nhất của xyz.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1992 – 1993)
Bài 10. a) Tìm giá trị nhỏ nhất của hàm số y .
b) Tìm giá trị lớn nhất của hàm số: y = .
(Đề thi chọn HSG Toán 9, tỉnh Thừa Thiên Huế năm học 1994 – 1995)
Bài 11. Cho ba số dương x, y, z thoả mãn điều kiện: . Tìm giá trị nhỏ nhất của biểu thức: P = 2x + 3y – 4z.
(Đề thi chọn HSG Toán 9, Quận 1, TP. HCM năm học 1994 – 1995)
Bài 12. Tìm giá trị lớn nhất và giá trị nhỏ nhất của  khi có .
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1995 – 1996)
Bài 13. Cho ba số dương a, b, c có tổng là một hằng số. Tìm a, b, c sao cho: ab + bc + ca lớn nhất.
(Đề thi chọn HSG Toán 9, Quận 1, TP. HCM năm học 1995 – 1996)
Bài 14. Cho biểu thức Q  trong đó , , ,…,  là các biến số dương và thoả mãn điều kiện . Tìm giá trị lớn nhất của Q và giá trị tương ứng các biến của nó.
(Đề thi chọn HSG Toán 9, Toàn quốcnăm học 1996 – 1997)
Bài 15. Cho x, y > 0 thoả mãn điều kiện x.y = 1. Tìm giá trị nhỏ nhất của biểu thức
.
(Đề thi HSG Toán 9, Trường THCS Colette, Quận 3, TP. HCM năm học 1996 – 1997)
Bài 16. Cho các số thực không âm , , , ,  có tổng bằng 1. Tìm giá trị lớn nhất của biểu thức: A 
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1996 – 1997)
Bài 17. Cho a, b > 0. Tìm giá trị nhỏ nhất của biểu thức  (với x > 0).
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1996 – 1997)
Bài 18. Tìm giá trị nhỏ nhất của hàm số:  với .
(Đề thi chọn HSG Toán 9, Quận 6, TP. HCM năm học 1997 – 1998)
Bài 19. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: .
(Đề thi chọn HSG Toán 9, Quận 6, TP. HCM năm học 1997 – 1998)
Bài 20. Tìm giá trị nhỏ nhất của hàm số: ..
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1997 – 1998)
Bài 21. Tìm giá trị nhỏ nhất của hàm số:  với 0 < x < 1.
(Đề thi chọn HSG Toán 9, TP. HCM năm học 1997 – 1998)
Bài 22. Tìm giá trị lớn nhất của biểu thức: A .
(Đề thi HSG Toán 9, Trường THCS Colette, Quận 3, TP
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thanh Vinh
Dung lượng: 397,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)