Toán 9
Chia sẻ bởi Phạm Hùng Cường |
Ngày 13/10/2018 |
50
Chia sẻ tài liệu: toán 9 thuộc Đại số 9
Nội dung tài liệu:
ĐỀ KIỂM TRA CHẤT LƯỢNG
Môn: TOÁN 9
Thời gian: 90 phút
(Không kề thời gian phát đề)
Câu 1: (2 điểm) Rút gọn biểu thức:
a)
b) (với )
Câu 2: (1 điểm) Giải hệ phương trình
Câu 3: (3 điểm) Cho hàm số bậc nhất: y = (m - 1)x + 3 (1) (với m 1)
a) Xác định m để hàm số (1) đồng biến trên R;
b) Xác định m, biết đồ thị của hàm số (1) song song với đường thẳng
y = - x + 1;
c) Xác định m để đường thẳng (d1) : y = 1 - 3x ; (d2) : y = - 0,5x - 1,5 và đồ thị của hàm số (1) cùng đi qua một điểm.
Câu 4: (3,5 điểm)
Cho đường tròn tâm O bán kính 3cm. Từ một điểm A cách O là 5cm vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm).
a) Chứng minh AO vuông góc với BC;
b) Kẻ đường kính BD. Chứng minh rằng DC song song với OA;
c) Tính chu vi và diện tích tam giác ABC.
d) Qua O kẻ đường thẳng vuông góc với BD, đường thẳng này cắt tia DC tại E. Đường thẳng AE và OC cắt nhau ở I; đường thẳng OE và AC cắt nhau ở G.
Chứng minh IG là trung trực của đoạn thẳng OA.
Câu 5: (0,5 điểm)
Giải phương trình: x2 + 4x + 7 = (x + 4)
HƯỚNG DẪN CHẤM KIỂM TRA HỌC KỲ I
Môn Toán 9
CÂU
NỘI DUNG CẦN ĐẠT
ĐIỂM
Câu 1a
=
0,5
=
0,5
Câu 1b
= = 0
1,0
Câu 2
0,5
Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (3; 1)
0,5
Câu 3a
Hàm số (1) đồng biến trên R khi m - 1 > 0
0,5
<=> m > 1 Vậy với m > 1 thì hàm số (1) đồng biến trên R
0,5
Câu 3b
Đồ thị của hàm số (1) song song với đường thẳng y = - x +1 khi
m – 1 = - 1 và 3 1(Luôn đúng)
0,5
=> m = 0
Vậy với m = 0 thì đồ thị của hàm số (1) song song với đường thẳng
y = - x + 1
0,5
Câu 3c
- Xác định được toạ độ giao điểm của (d1) và (d2) là (1; - 2)
0,5
- Để các đường thẳng (d1); (d2) và (1) cùng đi qua một điểm thì đường thẳng (1) phải đi qua điểm (1; - 2) => - 2 = (m - 1).1 + 3
Giải được m = - 4
0,5
Câu 4a
Vẽ hình đúng ý a)
0,5
Ta có OB = OC = R = 2(cm)
AB = AC ( Tính chất của hai tiếp tuyến cắt nhau)
0,5
=> AO là đường trung trực của BC hay OA BC
0,5
Câu 4b
Xét tam giác BDC có OB = OD = OD = BD (= R)
=> Tam giác BDC vuông tại C => DC BC tại C
Vậy DC // OA ( Vì cùng vuông góc với BC)
0,25
0,25
Câu 4c
- Xét tam giác ABO vuông có BO AB ( theo tính chất tiếp tuyến)
=> AB =
0,25
Gọi H là giao điểm của AO và BC
Vì A là trung trực của BC nên HB = HC =
Tam giác ABO vuông tại B có đường cao BH
=> HB.OA = OB.AB ( Hệ thức lượng trong tam giác vuông)
Tính được HB = 2,4 cm; BC = 4,8 cm
0,5
Lại có AB2 = OA.AH => AH = 3,2cm
Vậy chu vi tam giác ABC là AB + AC + BC =
= 4 + 4 + 4,8 =12,8 (cm)
Diện tích tam giác ABC là:
0,25
Câu 4d
Môn: TOÁN 9
Thời gian: 90 phút
(Không kề thời gian phát đề)
Câu 1: (2 điểm) Rút gọn biểu thức:
a)
b) (với )
Câu 2: (1 điểm) Giải hệ phương trình
Câu 3: (3 điểm) Cho hàm số bậc nhất: y = (m - 1)x + 3 (1) (với m 1)
a) Xác định m để hàm số (1) đồng biến trên R;
b) Xác định m, biết đồ thị của hàm số (1) song song với đường thẳng
y = - x + 1;
c) Xác định m để đường thẳng (d1) : y = 1 - 3x ; (d2) : y = - 0,5x - 1,5 và đồ thị của hàm số (1) cùng đi qua một điểm.
Câu 4: (3,5 điểm)
Cho đường tròn tâm O bán kính 3cm. Từ một điểm A cách O là 5cm vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm).
a) Chứng minh AO vuông góc với BC;
b) Kẻ đường kính BD. Chứng minh rằng DC song song với OA;
c) Tính chu vi và diện tích tam giác ABC.
d) Qua O kẻ đường thẳng vuông góc với BD, đường thẳng này cắt tia DC tại E. Đường thẳng AE và OC cắt nhau ở I; đường thẳng OE và AC cắt nhau ở G.
Chứng minh IG là trung trực của đoạn thẳng OA.
Câu 5: (0,5 điểm)
Giải phương trình: x2 + 4x + 7 = (x + 4)
HƯỚNG DẪN CHẤM KIỂM TRA HỌC KỲ I
Môn Toán 9
CÂU
NỘI DUNG CẦN ĐẠT
ĐIỂM
Câu 1a
=
0,5
=
0,5
Câu 1b
= = 0
1,0
Câu 2
0,5
Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (3; 1)
0,5
Câu 3a
Hàm số (1) đồng biến trên R khi m - 1 > 0
0,5
<=> m > 1 Vậy với m > 1 thì hàm số (1) đồng biến trên R
0,5
Câu 3b
Đồ thị của hàm số (1) song song với đường thẳng y = - x +1 khi
m – 1 = - 1 và 3 1(Luôn đúng)
0,5
=> m = 0
Vậy với m = 0 thì đồ thị của hàm số (1) song song với đường thẳng
y = - x + 1
0,5
Câu 3c
- Xác định được toạ độ giao điểm của (d1) và (d2) là (1; - 2)
0,5
- Để các đường thẳng (d1); (d2) và (1) cùng đi qua một điểm thì đường thẳng (1) phải đi qua điểm (1; - 2) => - 2 = (m - 1).1 + 3
Giải được m = - 4
0,5
Câu 4a
Vẽ hình đúng ý a)
0,5
Ta có OB = OC = R = 2(cm)
AB = AC ( Tính chất của hai tiếp tuyến cắt nhau)
0,5
=> AO là đường trung trực của BC hay OA BC
0,5
Câu 4b
Xét tam giác BDC có OB = OD = OD = BD (= R)
=> Tam giác BDC vuông tại C => DC BC tại C
Vậy DC // OA ( Vì cùng vuông góc với BC)
0,25
0,25
Câu 4c
- Xét tam giác ABO vuông có BO AB ( theo tính chất tiếp tuyến)
=> AB =
0,25
Gọi H là giao điểm của AO và BC
Vì A là trung trực của BC nên HB = HC =
Tam giác ABO vuông tại B có đường cao BH
=> HB.OA = OB.AB ( Hệ thức lượng trong tam giác vuông)
Tính được HB = 2,4 cm; BC = 4,8 cm
0,5
Lại có AB2 = OA.AH => AH = 3,2cm
Vậy chu vi tam giác ABC là AB + AC + BC =
= 4 + 4 + 4,8 =12,8 (cm)
Diện tích tam giác ABC là:
0,25
Câu 4d
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Hùng Cường
Dung lượng: 117,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)