Tiết 25 KT HH 8
Chia sẻ bởi Bùi Thị Thanh Hương |
Ngày 13/10/2018 |
42
Chia sẻ tài liệu: Tiết 25 KT HH 8 thuộc Hình học 8
Nội dung tài liệu:
Họ và tên: …………………………………………
Lớp: ……….
ĐỀ KIỂM TRA 1 TIẾT MÔN HÌNH HỌC 8.
THỜI GIAN: 45 phút.
Phần 1: Trắc nghiệm. (2đ)
I- Chọn câu trả lời phù hợp.
Câu 1: Trục đối xứng của hình bình hành ABCD là:
A. Đường thẳng nối trung điểm AB, CD. B. Đường chéo AC, BD
C. Đường thẳng đi qua giao điểm 2 đường chéo D. Không có trục đối xứng
Câu 2: Cho hình vuông MNPQ có MN =cm. Độ dài đường chéo MP là:
A. cm B. 2cm C. 4cm D. 8cm
Câu 3: Câu nào dưới đây là đúng?
A. Tứ giác có hai đường chéo bằng nhau là hình thang cân.
B. (ABC và ( A’B’C’ đối xứng qua đường thẳng a có chu vi bằng nhau.
C. Mọi hình là hình thang cân đều chỉ có một trục đối xứng.
D. Cả 3 câu đều đúng.
Câu 4: Tứ giác ABCD vuông ở A có AB = BC, CD = AD, B = 110(. Số đo góc C là:
A. 90( B. 60( C. 50( D. 160(
II- Điền các từ thích hợp vào chỗ trống.
1. Tứ giác có 2 cặp cạnh đối bằng nhau và 2 góc kề một cạnh bằng nhau là (1) ………………… …………..…………
2. Hình thang có hai cạnh đáy bằng nhau là (2)…………….…………………………
3. Tam giác đều có ba (3)…………… đối xứng và chỉ có một (4)…………….…………….
Phần 2: Tự luận. (8đ)
Câu 1: (4đ) Cho hình bình hành ABCD có D= 60(, AB = 2AD. Gọi M, N lần lượt là trung điểm của AB, CD. Kẻ AH, MK vuông góc với CD. Chứng minh rằng:
AH=MK.
MC BN.
Gọi F là điểm đối xứng với H qua M. Chứng minh BF ( AB.
Câu 2: (4đ) Cho hình chữ nhật ABCD, tia phân giác góc D cắt AB tại E. Trên CD lấy F sao cho EB = FC.
Chứng minh EBCF là hình chữ nhật, AEFD là hình vuông.
Phát biểu các tính chất về hai đường chéo của hình vuông.
Kẻ CP ( DE, cắt AB, DA tại M và N. Chứng minh MA= NA = EB.
Bài làm
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Đáp án: Đề hình học 8
Phần 1: Trắc nghiệm. (2đ)
I- Chọn câu trả lời phù hợp.
1. D 2. C 3. B 4. C
II- Điền từ thích hợp vào chỗ trống.
1. hình chữ nhật 2. hình bình hành
3. trục 4. tâm đối xứng
Mỗi câu đúng được 0,25đ
Phần 2: Tự luận. (8đ)
Câu 1: (4đ) Câu 2: (4đ)
- Vẽ hình đúng (0,5đ)
-Vẽ hình đúng (0,5đ) a) Chứng minh EBCF là hình chữ nhật
a) Chứng minh AH = MK. AEFD là hình vuông
- AMKH là hình chữ nhật - EBCF là hình bình hành có B = 90(
( AH = MK (t/c) (1) Kết luận EBCF là hình chữ nhật. (0,75)
b) Chứng minh MC ( BN. - AEFD là hình chữ nhật có DE là p/g góc D
- Chứng minh được MB = NC. Kết luận AEDF là hình vuông (0,75)
Kết luận MNCB là hình bình hành (0,5đ) b) Phát biểu đúng các tính chất về đường chéo
- Chứng minh được MB = BC (0,5đ) của hình vuông (1đ)
Kết luận MNCB là hình thoi c) Chứng minh MA= NA = EB.
( MC ( BN (0,5đ) (NDC cân (đường cao trùng đường f/g)
c) Chứng minh FB ( AB ( ND = DC
- Nối BK. ( NA = FC ( NA = EB (0,5)
- Chứng minh HK = MB (=AM
Lớp: ……….
ĐỀ KIỂM TRA 1 TIẾT MÔN HÌNH HỌC 8.
THỜI GIAN: 45 phút.
Phần 1: Trắc nghiệm. (2đ)
I- Chọn câu trả lời phù hợp.
Câu 1: Trục đối xứng của hình bình hành ABCD là:
A. Đường thẳng nối trung điểm AB, CD. B. Đường chéo AC, BD
C. Đường thẳng đi qua giao điểm 2 đường chéo D. Không có trục đối xứng
Câu 2: Cho hình vuông MNPQ có MN =cm. Độ dài đường chéo MP là:
A. cm B. 2cm C. 4cm D. 8cm
Câu 3: Câu nào dưới đây là đúng?
A. Tứ giác có hai đường chéo bằng nhau là hình thang cân.
B. (ABC và ( A’B’C’ đối xứng qua đường thẳng a có chu vi bằng nhau.
C. Mọi hình là hình thang cân đều chỉ có một trục đối xứng.
D. Cả 3 câu đều đúng.
Câu 4: Tứ giác ABCD vuông ở A có AB = BC, CD = AD, B = 110(. Số đo góc C là:
A. 90( B. 60( C. 50( D. 160(
II- Điền các từ thích hợp vào chỗ trống.
1. Tứ giác có 2 cặp cạnh đối bằng nhau và 2 góc kề một cạnh bằng nhau là (1) ………………… …………..…………
2. Hình thang có hai cạnh đáy bằng nhau là (2)…………….…………………………
3. Tam giác đều có ba (3)…………… đối xứng và chỉ có một (4)…………….…………….
Phần 2: Tự luận. (8đ)
Câu 1: (4đ) Cho hình bình hành ABCD có D= 60(, AB = 2AD. Gọi M, N lần lượt là trung điểm của AB, CD. Kẻ AH, MK vuông góc với CD. Chứng minh rằng:
AH=MK.
MC BN.
Gọi F là điểm đối xứng với H qua M. Chứng minh BF ( AB.
Câu 2: (4đ) Cho hình chữ nhật ABCD, tia phân giác góc D cắt AB tại E. Trên CD lấy F sao cho EB = FC.
Chứng minh EBCF là hình chữ nhật, AEFD là hình vuông.
Phát biểu các tính chất về hai đường chéo của hình vuông.
Kẻ CP ( DE, cắt AB, DA tại M và N. Chứng minh MA= NA = EB.
Bài làm
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Đáp án: Đề hình học 8
Phần 1: Trắc nghiệm. (2đ)
I- Chọn câu trả lời phù hợp.
1. D 2. C 3. B 4. C
II- Điền từ thích hợp vào chỗ trống.
1. hình chữ nhật 2. hình bình hành
3. trục 4. tâm đối xứng
Mỗi câu đúng được 0,25đ
Phần 2: Tự luận. (8đ)
Câu 1: (4đ) Câu 2: (4đ)
- Vẽ hình đúng (0,5đ)
-Vẽ hình đúng (0,5đ) a) Chứng minh EBCF là hình chữ nhật
a) Chứng minh AH = MK. AEFD là hình vuông
- AMKH là hình chữ nhật - EBCF là hình bình hành có B = 90(
( AH = MK (t/c) (1) Kết luận EBCF là hình chữ nhật. (0,75)
b) Chứng minh MC ( BN. - AEFD là hình chữ nhật có DE là p/g góc D
- Chứng minh được MB = NC. Kết luận AEDF là hình vuông (0,75)
Kết luận MNCB là hình bình hành (0,5đ) b) Phát biểu đúng các tính chất về đường chéo
- Chứng minh được MB = BC (0,5đ) của hình vuông (1đ)
Kết luận MNCB là hình thoi c) Chứng minh MA= NA = EB.
( MC ( BN (0,5đ) (NDC cân (đường cao trùng đường f/g)
c) Chứng minh FB ( AB ( ND = DC
- Nối BK. ( NA = FC ( NA = EB (0,5)
- Chứng minh HK = MB (=AM
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Bùi Thị Thanh Hương
Dung lượng: 68,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)