Thi tuyển 10 năm 2010-2011 HN-HCM-ĐN có ĐA
Chia sẻ bởi Trần Hồng Hợi |
Ngày 13/10/2018 |
35
Chia sẻ tài liệu: Thi tuyển 10 năm 2010-2011 HN-HCM-ĐN có ĐA thuộc Đại số 9
Nội dung tài liệu:
KÌ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG
KHÓA NGÀY 21 THÁNG 6 NĂM 2010 tại Đà Nẵng
MÔN THI : TOÁN
---------
Bài 1 (2,0 điểm)
a) Rút gọn biểu thức
b) Tính
Bài 2 (2,0 điểm)
a) Giải phương trình
b) Giải hệ phương trình
Bài 3 (2,5 điểm)
Cho hai hàm số y = 2x2 có đồ thị (P) và y = x + 3 có đồ thị (d).
a) Vẽ các đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ Oxy.
b) Gọi A là giao điểm của hai đồ thị (P) và (d) có hoành độ âm. Viết phương trình của đường thẳng (() đi qua A và có hệ số góc bằng - 1.
c) Đường thẳng (() cắt trục tung tại C, cắt trục hoành tại D. Đường thẳng (d) cắt trục hoành tại B. Tính tỉ số diện tích của hai tam giác ABC và tam giác ABD.
Bài 4 (3,5 điểm)
Cho hai đường tròn (C) tâm O, bán kính R và đường tròn (C`) tâm O`, bán kính R` (R > R`) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung MN của hai đường tròn (M ( (C), N ( (C`)). Đường thẳng AB cắt MN tại I (B nằm giữa A và I).
a) Chứng minh rằng
b) Chứng minh rằng IN2 = IA.IB
c) Đường thẳng MA cắt đường thẳng NB tại Q; đường thẳng NA cắt đường thẳng MB tại P. Chứng minh rằng MN song song với QP.
KHÓA NGÀY 21 THÁNG 6 NĂM 2010 tại Đà Nẵng
MÔN THI : TOÁN
---------
Bài 1 (2,0 điểm)
a) Rút gọn biểu thức
b) Tính
Bài 2 (2,0 điểm)
a) Giải phương trình
b) Giải hệ phương trình
Bài 3 (2,5 điểm)
Cho hai hàm số y = 2x2 có đồ thị (P) và y = x + 3 có đồ thị (d).
a) Vẽ các đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ Oxy.
b) Gọi A là giao điểm của hai đồ thị (P) và (d) có hoành độ âm. Viết phương trình của đường thẳng (() đi qua A và có hệ số góc bằng - 1.
c) Đường thẳng (() cắt trục tung tại C, cắt trục hoành tại D. Đường thẳng (d) cắt trục hoành tại B. Tính tỉ số diện tích của hai tam giác ABC và tam giác ABD.
Bài 4 (3,5 điểm)
Cho hai đường tròn (C) tâm O, bán kính R và đường tròn (C`) tâm O`, bán kính R` (R > R`) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung MN của hai đường tròn (M ( (C), N ( (C`)). Đường thẳng AB cắt MN tại I (B nằm giữa A và I).
a) Chứng minh rằng
b) Chứng minh rằng IN2 = IA.IB
c) Đường thẳng MA cắt đường thẳng NB tại Q; đường thẳng NA cắt đường thẳng MB tại P. Chứng minh rằng MN song song với QP.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trần Hồng Hợi
Dung lượng: 170,51KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)