Thi thu 2010-2011
Chia sẻ bởi Bùi Thị Hạnh |
Ngày 13/10/2018 |
37
Chia sẻ tài liệu: thi thu 2010-2011 thuộc Đại số 9
Nội dung tài liệu:
TUYỂN SINH VÀO 10 THPT 2010 – 2011
KỲ THI THỬ VÒNG 1
TRƯỜNG THCS THĂNG LONG
Ngày thi 27-5-2010. Thời gian 120 phút
Bài 1 ( 2,5 điểm )
Cho biểu thức:
a) Rút gọn P.
b) So sánh P với 5.
c) Với mọi giá trị của x làm P có nghĩa, chứng minh rằng: biểu thức chỉ nhận đúng một giá trị nguyên.
Bài 2 ( 1 điểm )
Cho Parabol (P) và đường thẳng (d) có phương trình:
(P): ; (d): ( m là tham số )
1/ Tìm m để đường thẳng (d) và Parabol (P) cùng đi qua điểm có hoành độ bằng 4.
2/ Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt.
3/ Giả sử () và () là tọa độ các giao điểm của (d) và (P). Chứng minh rằng:
Bài 3 ( 2 điểm ) Giải bài toán bằng cách lập phương trình
Một phòng họp có 100 chỗ ngồi, nhưng số người đến họp tăng thêm 44 người. Do đó người ta phải kê thêm 2 dãy ghế và mỗi dãy ghế phải xếp thêm 2 người ngồi. Hỏi phòng họp lúc đầu có bao nhiêu dãy ghế.
Bài 4 ( 3,5 điểm )
Cho nửa đường tròn tâm O đường kính AB=2R. C là trung điểm của đoạn AO, đường thẳng Cx vuông góc với AB, Cx cắt nửa đường tròn (O) tại I. K là một điểm bất kỳ nằm trên đoạn CI (K khác C; K khác I), Tia Ax cắt nửa đường tròn đã cho tại M. Tiếp tuyến với nửa đường tròn tại M cắt Cx tại N, tia BM cắt Cx tại D.
a) Chứng minh bốn điểm A, C, M, D cùng thuộc một đường tròn.
b) Chứng minh tam giác MNK là tam giác cân.
c) Tính diện tích tam giác ABD khi K là trung điểm của đoạn thẳng CI.
d) Khi K di động trên đoạn CI thì tâm của đường tròn ngoại tiếp tam giác ADK di chuyển trên đường nào?
Bài 5 ( 1 điểm )
Giải phương trình:
KỲ THI THỬ VÒNG 1
TRƯỜNG THCS THĂNG LONG
Ngày thi 27-5-2010. Thời gian 120 phút
Bài 1 ( 2,5 điểm )
Cho biểu thức:
a) Rút gọn P.
b) So sánh P với 5.
c) Với mọi giá trị của x làm P có nghĩa, chứng minh rằng: biểu thức chỉ nhận đúng một giá trị nguyên.
Bài 2 ( 1 điểm )
Cho Parabol (P) và đường thẳng (d) có phương trình:
(P): ; (d): ( m là tham số )
1/ Tìm m để đường thẳng (d) và Parabol (P) cùng đi qua điểm có hoành độ bằng 4.
2/ Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt.
3/ Giả sử () và () là tọa độ các giao điểm của (d) và (P). Chứng minh rằng:
Bài 3 ( 2 điểm ) Giải bài toán bằng cách lập phương trình
Một phòng họp có 100 chỗ ngồi, nhưng số người đến họp tăng thêm 44 người. Do đó người ta phải kê thêm 2 dãy ghế và mỗi dãy ghế phải xếp thêm 2 người ngồi. Hỏi phòng họp lúc đầu có bao nhiêu dãy ghế.
Bài 4 ( 3,5 điểm )
Cho nửa đường tròn tâm O đường kính AB=2R. C là trung điểm của đoạn AO, đường thẳng Cx vuông góc với AB, Cx cắt nửa đường tròn (O) tại I. K là một điểm bất kỳ nằm trên đoạn CI (K khác C; K khác I), Tia Ax cắt nửa đường tròn đã cho tại M. Tiếp tuyến với nửa đường tròn tại M cắt Cx tại N, tia BM cắt Cx tại D.
a) Chứng minh bốn điểm A, C, M, D cùng thuộc một đường tròn.
b) Chứng minh tam giác MNK là tam giác cân.
c) Tính diện tích tam giác ABD khi K là trung điểm của đoạn thẳng CI.
d) Khi K di động trên đoạn CI thì tâm của đường tròn ngoại tiếp tam giác ADK di chuyển trên đường nào?
Bài 5 ( 1 điểm )
Giải phương trình:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Bùi Thị Hạnh
Dung lượng: 34,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)