SKKN:PP Dien tich

Chia sẻ bởi Phùng Quang Thanh | Ngày 13/10/2018 | 41

Chia sẻ tài liệu: SKKN:PP Dien tich thuộc Hình học 8

Nội dung tài liệu:



Đặt vấn đề


Đối với học sinh THCS, có những bài toán mà nếu không biết sử dụng phương pháp diện tích để chứng minh thì việc giải bài toán đó sẽ gặp nhiều khó khăn. Bởi vậy khi dạy phần diện tích đa giác, tôi cũng rất quan tâm đến vấn đề này, mỗi khi có điều kiện để nêu ra cho học sinh , tôi đều không bỏ qua. Đặc biệt là năm học 2004 – 2005, khi có yêu cầu dạy môn Tự chọn cho học sinh lớp 8 mà tôi được phân công dạy chủ đề “ Phương pháp diện tích trong chứng minh hình học “ thì ý định tập hợp các kinh nghiệm giảng dạy của mình và của các đồng nghiệp , đồng thời tìm tòi bổ sung thêm những dạng bài tập có liên quan tới phương pháp trên lại càng thúc giục tôi .
Học sinh THCS đã biết sử dụng công thức diện tích để tính toán vì các em đã được làm quen từ Tiểu học . Nhưng làm thế nào để HS biết sử dụng chúng để chứng minh thì không đơn giản chút nào . Sau đây tôi xin được trình bày một số kinh nghiệm của mình kết hợp với những vấn đề mình tìm tòi học hỏi được để “ Giúp học sinh biết sử dụng phương pháp diện tích trong chứng minh hình học “

Giải quyết vấn đề
1 -Trước tiên phải cho học sinh hiểu được phương pháp diện tích là
gì và ích lợi của phương pháp này .
Ở tiểu học, học sinh đã được học về diện tích các hình chữ nhật, hình vuông, hình tam giác … Các công thức về diện tích các hình nói trên chủ yếu được các em ứng dụng trong việc giải quyết các bài tập tính toán có liên quan đến diện tích . Lên đến THCS, HS lớp 8 lại tiếp tục được học về diện tích của các hình này nhưng ở diện rộng hơn và sâu hơn. Tới đây, ta cũng cần cho học sinh thấy được ngoài ứng dụng tính toán, các công thức tính diện tích còn cho ta mối quan hệ về độ dài của các đoạn thẳng, chúng rất có ích trong một số bài toán chứng minh về đại số cũng như hình học. Chẳng hạn :
Sách giáo khoa cũ có những bài toán đề cập đến vấn đề này .
Ví dụ 1 :
Sau khi học về hằng đẳng thức bình phương của tổng hay hiệu , có bài toán yêu cầu dùng hình học để chứng minh công thức (a+b)2 = a2 + 2ab + b2 và (a-b)2 = a2 - 2ab + b2
a b b

b
a
a

Ví dụ 2 : Cho một tam giác vuông cân. Chứng minh rằng tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích hình vuông dựng trên cạnh huyền










Bài toán này là minh hoạ hình học cho định lí Pytago trong trường hợp tam giác vuông cân .
Do đổi mới phương pháp dạy học mà sách giáo khoa mới ít đề cập đến vấn đề này hơn . Nhưng không có nghĩa là vấn đề này không phù hợp với yêu cầu mới , bởi vì nó cũng được đưa vào nội dung của môn học tự chọn . Vậy đây cũng là một phần kiến thức mà học sinh cần tham khảo để bổ sung , hỗ trợ cho việc học tập của các em được tốt hơn .
Vì thế , sau khi học sinh được học tính chất của diện tích đa giác , công thức tính diện tích hình chữ nhật và hình vuông , ngoài các bài tập ở SGK , tôi vẫn đưa các bài tập trên cho HS tham khảo thêm
Bài 1 : Trên hình vẽ, các tứ giác ABCD, IOKD, MNPQ, IGHQ là các hình vuông. Bằng công thức tính diện tích hình vuông và hình chữ nhật, em hãy chứng minh các hằng đẳng thức (a+b)2 = a2 + 2ab + b2 và (a-b)2 = a2 - 2ab + b2 .
a b b


a



Bài tập này không bắt buộc tất cả học sinh phải làm. Những học sinh nào làm được sẽ được tính điểm vào cột điểm của môn học Tự chọn. Sau đó có thể giới thiệu thêm cho học sinh biết : Từ thời cổ, nhờ công thức diện tích mà người ta khám phá ra công thức bình phương của tổng hay hiệu nói trên. Phương pháp dùng công thức diện tích để chứng minh gọi là phương pháp diện tích. Đây cũng là một phương pháp góp phần thúc đẩy sự phát triển toán học thời cổ .
Như vậy , học sinh đã được tiếp cận với phương pháp diện tích . Để củng cố thêm , sau khi dạy song bài “ Diện tích tam giác “ tôi chọn bài tập số 17 SGK lớp 8 tập I trang 121:
Bài toán 2 : Cho tam giác AOB vuông tại O với đường cao OM . Hãy
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phùng Quang Thanh
Dung lượng: 152,50KB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)