ÔN THI VAO 10-2013
Chia sẻ bởi Nguyễn Thu Hiền |
Ngày 13/10/2018 |
37
Chia sẻ tài liệu: ÔN THI VAO 10-2013 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ CẦN THƠ
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2012-2013
Khóa ngày:21/6/2012
MÔN: TOÁN
Thời gian làm bài: 120 phút (không kể thời gian phát đề)
Câu 1: (2,0 điểm)
Giải hệ phương trình , các phương trình sau đây:
1.
2.
3.
4.
Câu 2: (1,5 điểm)
Cho biểu thức: (với )
1. Rút gọn biểu thức K.
2. Tìm a để .
Câu 3: (1,5 điểm)
Cho phương trình (ẩn số x): .
1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m.
2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .
Câu 4: (1,5 điểm)
Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô.
Câu 5: (3,5 điểm)
Cho đường tròn , từ điểm ở ngoài đường tròn vẽ hai tiếp tuyến và(là các tiếp điểm). cắttại E.
1. Chứng minh tứ giác nội tiếp.
2. Chứng minh vuông góc với và .
3. Gọilà trung điểm của , đường thẳng quavà vuông góc cắt các tia theo thứ tự tại và . Chứng minh và cân tại .
4. Chứng minh là trung điểm của.
-------HẾT-------
Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.
Họ và tên thí sinh: .............................................. Số báo danh: ...........................
Chữ kí của giám thị 1: ....................................... Chữ kí của giám thị 2: ..............................
SỞ GD&ĐT NGHỆ AN
KỲ THI TUYỂN SINH VÀO LỚP 1 THPT
NĂM HỌC 2012 – 2013
Môn thi: TOÁN
Thời gian làm bài : 120 phút
Câu 1 (2,5 điểm)
Cho biểu thức A =
Nêu điều kiện xác định và rút gọn biểu thức A.
Tim tất cả các giá trị của x để A .
Tim tất cả các giá trị của x để là một số nguyên.
Câu 2 (1,5 điểm)
Trên quãng đường AB dài 156 km, một người đi xe máy từ A và một người đi xe đạp từ B. hai xe xuất phát cùng một lúc và sau 3 giờ thì gặp nhau. Biết rằng vận tốc xe máy lớn hơn vận tốc xe đạp là 28 km/h. Tính vận tốc của mỗi xe.
Câu 3 (2,0 điểm)
Cho phương trình: x2 – 2(m -1)x + m2 -6 = 0, m là tham số.
Giải phương trình với m = 3.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn:
Câu 4 (4,0 điểm)
Cho điểm M nằm ngoài đường tròn (O). Vẽ các tiếp tuyến MA, MB ( A, B là các tiếp điểm) và cát tuyến ACD không đi qua O ( C nằm giữa M và D) với đường tròn (O). Đoạn thẳng MO cắt AB và (O) theo thứ tự tại H và I.
Chứng minh rằng:
a) Tứ giác MAOB nội tiếp đường tròn.
b) MC.MD=MA2.
c) OH.OM+MC.MD=MO2.
d) CI là phân giác của .
----- Hết ------
Họ và tên thí sinh :…………………………………………Số báo danh…………..
HƯỚNG DẪN CHẤM (Tự giải)
Câu
Nội dung
Biểu điểm
1
a
ĐKXĐ:
A =
0,5
0,5
b
Kết hợp với ĐKXĐ ta có
0,5
0,5
c
Để B là một số nguyên thì Ư(14). Do
Ta có bảng giá trị
1
2
7
14
x
Loại
Loại
Vậy thì B là một số nguyên.
0,5
2
Gọi x (km/h) là vận tốc của người đi xe đạp
THÀNH PHỐ CẦN THƠ
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2012-2013
Khóa ngày:21/6/2012
MÔN: TOÁN
Thời gian làm bài: 120 phút (không kể thời gian phát đề)
Câu 1: (2,0 điểm)
Giải hệ phương trình , các phương trình sau đây:
1.
2.
3.
4.
Câu 2: (1,5 điểm)
Cho biểu thức: (với )
1. Rút gọn biểu thức K.
2. Tìm a để .
Câu 3: (1,5 điểm)
Cho phương trình (ẩn số x): .
1. Chứng minh phương trình (*) luôn có hai nghiệm phân biệt với mọi m.
2. Tìm giá trị của m để phương trình (*) có hai nghiệm thỏa .
Câu 4: (1,5 điểm)
Một ô tô dự định đi từ A đến B cách nhau 120 km trong một thời gian quy định. Sau khi đi được 1 giờ thì ô tô bị chặn bởi xe cứu hỏa 10 phút. Do đó để đến B đúng hạn xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ô tô.
Câu 5: (3,5 điểm)
Cho đường tròn , từ điểm ở ngoài đường tròn vẽ hai tiếp tuyến và(là các tiếp điểm). cắttại E.
1. Chứng minh tứ giác nội tiếp.
2. Chứng minh vuông góc với và .
3. Gọilà trung điểm của , đường thẳng quavà vuông góc cắt các tia theo thứ tự tại và . Chứng minh và cân tại .
4. Chứng minh là trung điểm của.
-------HẾT-------
Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.
Họ và tên thí sinh: .............................................. Số báo danh: ...........................
Chữ kí của giám thị 1: ....................................... Chữ kí của giám thị 2: ..............................
SỞ GD&ĐT NGHỆ AN
KỲ THI TUYỂN SINH VÀO LỚP 1 THPT
NĂM HỌC 2012 – 2013
Môn thi: TOÁN
Thời gian làm bài : 120 phút
Câu 1 (2,5 điểm)
Cho biểu thức A =
Nêu điều kiện xác định và rút gọn biểu thức A.
Tim tất cả các giá trị của x để A .
Tim tất cả các giá trị của x để là một số nguyên.
Câu 2 (1,5 điểm)
Trên quãng đường AB dài 156 km, một người đi xe máy từ A và một người đi xe đạp từ B. hai xe xuất phát cùng một lúc và sau 3 giờ thì gặp nhau. Biết rằng vận tốc xe máy lớn hơn vận tốc xe đạp là 28 km/h. Tính vận tốc của mỗi xe.
Câu 3 (2,0 điểm)
Cho phương trình: x2 – 2(m -1)x + m2 -6 = 0, m là tham số.
Giải phương trình với m = 3.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn:
Câu 4 (4,0 điểm)
Cho điểm M nằm ngoài đường tròn (O). Vẽ các tiếp tuyến MA, MB ( A, B là các tiếp điểm) và cát tuyến ACD không đi qua O ( C nằm giữa M và D) với đường tròn (O). Đoạn thẳng MO cắt AB và (O) theo thứ tự tại H và I.
Chứng minh rằng:
a) Tứ giác MAOB nội tiếp đường tròn.
b) MC.MD=MA2.
c) OH.OM+MC.MD=MO2.
d) CI là phân giác của .
----- Hết ------
Họ và tên thí sinh :…………………………………………Số báo danh…………..
HƯỚNG DẪN CHẤM (Tự giải)
Câu
Nội dung
Biểu điểm
1
a
ĐKXĐ:
A =
0,5
0,5
b
Kết hợp với ĐKXĐ ta có
0,5
0,5
c
Để B là một số nguyên thì Ư(14). Do
Ta có bảng giá trị
1
2
7
14
x
Loại
Loại
Vậy thì B là một số nguyên.
0,5
2
Gọi x (km/h) là vận tốc của người đi xe đạp
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thu Hiền
Dung lượng: 2,23MB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)