ON TAP HE PHUONG TRINH HAY
Chia sẻ bởi trần văn luật |
Ngày 13/10/2018 |
46
Chia sẻ tài liệu: ON TAP HE PHUONG TRINH HAY thuộc Đại số 9
Nội dung tài liệu:
HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ
B. NỘI DUNG:
I: CÁCH GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản
1.- Vận dụng quy tắc thế và quy tắc cộng đại số để giải các hệ phương trình sau:
2.- Bài tập:
Bài 1: Giải các hệ phương trình
1) 2) 3) 4)
5) 6) 7)
Bài 2: Giải các hệ phương trình sau:
1) 2)
3) 4)
5) 6)
Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ
Bài tập:
1) 2) 3)
4) 5) 6)
7) 8)
Dạng 3. Giải và biện luận hệ phương trình
Phương pháp giải:
Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x
Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1)
Biện luận phương trình (1) ta sẽ có sự biện luận của hệ
i) Nếu a=0: (1) trở thành 0x = b
- Nếu b = 0 thì hệ có vô số nghiệm
- Nếu b0 thì hệ vô nghiệm
ii) Nếu a 0 thì (1) x = , Thay vào biểu thức của x ta tìm y, lúc đó hệ phương trình có nghiệm duy nhất.
Ví dụ: Giải và biện luận hệ phương trình:
Từ (1) y = mx – 2m, thay vào (2) ta được:
4x – m(mx – 2m) = m + 6 (m2 – 4)x = (2m + 3)(m – 2) (3)
i) Nếu m2 – 4 0 hay m2 thì x =
Khi đó y = - . Hệ có nghiệm duy nhất: (;-)
ii) Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4
Hệ có vô số nghiệm (x, 2x-4) với mọi x R
iii) Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm
Vậy: - Nếu m2 thì hệ có nghiệm duy nhất: (x,y) = (;-)
- Nếu m = 2 thì hệ có vô số nghiệm (x, 2x-4) với mọi x R
- Nếu m = -2 thì hệ vô nghiệm
Bài tập: Giải và biện luận các hệ phương trình sau:
1) 2) 3)
4) 5) 6)
DẠNG 4:
XÁC ĐỊNH GIÁ TRỊ CỦA THAM SỐ
ĐỂ HỆ CÓ NGHIỆM THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC
Phương pháp giải:
Giải hệ phương trình theo tham số
Viết x, y của hệ về dạng: n + với n, k nguyên
Tìm m nguyên để f(m) là ước của k
Ví dụ1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:
HD Giải:
để hệ có nghiệm duy nhất thì m2 – 4 0 hay m
Vậy với m hệ phương trình có nghiệm duy nhất
Để x, y là những số nguyên thì m + 2 Ư(3) =
Vậy: m + 2 = 1, 3 => m = -1; -3; 1; -5
Bài Tập:
Bài 1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:
Bài 2: Định m, n để hệ phương trình sau có nghiệm là (2; -1)
Bài 3: Xác định a, b để đường thẳng y = ax + b đi qua hai điểm
a) A(2; 1); B(1; 2) b) M(1; 3); N(3; 2) c) P(1; 2); Q(2; 0)
Bài 4: Định m để 3 đường thẳng 3x + 2y = 4; 2x – y = m và x + 2y = 3 đồng quy
Bài 5: Định m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước
Cho hệ phương trình:
Với giá trị nào của m để hệ có nghiệm (x; y) thỏa mãn hệ thức:
B. NỘI DUNG:
I: CÁCH GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản
1.- Vận dụng quy tắc thế và quy tắc cộng đại số để giải các hệ phương trình sau:
2.- Bài tập:
Bài 1: Giải các hệ phương trình
1) 2) 3) 4)
5) 6) 7)
Bài 2: Giải các hệ phương trình sau:
1) 2)
3) 4)
5) 6)
Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ
Bài tập:
1) 2) 3)
4) 5) 6)
7) 8)
Dạng 3. Giải và biện luận hệ phương trình
Phương pháp giải:
Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x
Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1)
Biện luận phương trình (1) ta sẽ có sự biện luận của hệ
i) Nếu a=0: (1) trở thành 0x = b
- Nếu b = 0 thì hệ có vô số nghiệm
- Nếu b0 thì hệ vô nghiệm
ii) Nếu a 0 thì (1) x = , Thay vào biểu thức của x ta tìm y, lúc đó hệ phương trình có nghiệm duy nhất.
Ví dụ: Giải và biện luận hệ phương trình:
Từ (1) y = mx – 2m, thay vào (2) ta được:
4x – m(mx – 2m) = m + 6 (m2 – 4)x = (2m + 3)(m – 2) (3)
i) Nếu m2 – 4 0 hay m2 thì x =
Khi đó y = - . Hệ có nghiệm duy nhất: (;-)
ii) Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4
Hệ có vô số nghiệm (x, 2x-4) với mọi x R
iii) Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm
Vậy: - Nếu m2 thì hệ có nghiệm duy nhất: (x,y) = (;-)
- Nếu m = 2 thì hệ có vô số nghiệm (x, 2x-4) với mọi x R
- Nếu m = -2 thì hệ vô nghiệm
Bài tập: Giải và biện luận các hệ phương trình sau:
1) 2) 3)
4) 5) 6)
DẠNG 4:
XÁC ĐỊNH GIÁ TRỊ CỦA THAM SỐ
ĐỂ HỆ CÓ NGHIỆM THỎA MÃN ĐIỀU KIỆN CHO TRƯỚC
Phương pháp giải:
Giải hệ phương trình theo tham số
Viết x, y của hệ về dạng: n + với n, k nguyên
Tìm m nguyên để f(m) là ước của k
Ví dụ1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:
HD Giải:
để hệ có nghiệm duy nhất thì m2 – 4 0 hay m
Vậy với m hệ phương trình có nghiệm duy nhất
Để x, y là những số nguyên thì m + 2 Ư(3) =
Vậy: m + 2 = 1, 3 => m = -1; -3; 1; -5
Bài Tập:
Bài 1: Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:
Bài 2: Định m, n để hệ phương trình sau có nghiệm là (2; -1)
Bài 3: Xác định a, b để đường thẳng y = ax + b đi qua hai điểm
a) A(2; 1); B(1; 2) b) M(1; 3); N(3; 2) c) P(1; 2); Q(2; 0)
Bài 4: Định m để 3 đường thẳng 3x + 2y = 4; 2x – y = m và x + 2y = 3 đồng quy
Bài 5: Định m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước
Cho hệ phương trình:
Với giá trị nào của m để hệ có nghiệm (x; y) thỏa mãn hệ thức:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: trần văn luật
Dung lượng: 259,00KB|
Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)