Ôn tập Chương IV. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
Chia sẻ bởi Nguyên Văn Sơn |
Ngày 05/05/2019 |
50
Chia sẻ tài liệu: Ôn tập Chương IV. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn thuộc Đại số 9
Nội dung tài liệu:
Nhiệt liệt Chào mừng
Các thầy cô giáo về dự giờ
lớp 9A
năm học 2009 - 2010
Th? 7 ngy 10 thỏng 04 nam 2010
Hàm số y = ax2,
(a ? 0)
Hệ thức Vi-et và
ứng dụng
Phương trình bậc hai
ax2+ bx + c = 0,
(a ? 0)
Những kiến thức cơ bản
Tiết 64 Ôn tập chương IV
? Hàm số y = ax2, (a ? 0).
?Phương trình bậc hai một ẩn.
Hàm số y = ax2 có đặc điểm gì ?
a > 0
a < 0
Hàm số nghịch biến khi x < 0 , đồng biến khi x > 0
GTNN của hàm số bằng 0 khi x = 0
Hàm số đồng biến khi x < 0 , nghịch biến khi x > 0
GTLN của hàm số bằng 0 khi x = 0
Hãy nêu công thức nghiệm của PT: ax2 + bx + c = 0, (a ? 0) ?
∆ = b2 – 4ac
∆’ = (b’)2 – ac (víi b = 2b’)
∆ > 0: PT cã 2 nghiÖm
ph©n biÖt x1,2
∆’ = 0: PT cã nghiÖm
kÐp x1= x2 =
∆ < 0: PT v« nghiÖm
∆’> 0: PT cã 2 nghiÖm
ph©n biÖt x1,2 =
∆ = 0: PT cã nghiÖm
kÐp x1= x2 =
∆’ < 0: PT v« nghiÖm
Bài tập vận dụng
Bµi tËp 55 /Sgk - 63
a, x2 - x - 2 = 0
có a = 1, b = -1 , c = -2
Vì a - b + c = 1 - ( - 1) + (- 2 ) = 0 nên pt có nghiệm
x1 = -1 ; x2 = 2
b) Vẽ đồ thị hàm số y = x2 và y = x + 2
c) Hoành độ giao điểm của đồ thị hàm số
y = x2 và y = x + 2 chính là nghiệm của pt:
x2 = x + 2 hay x2 - x - 2 = 0
?Giải PT trùng phương ax4+bx2+c=0 (a ? 0).
a, 3x4 - 12x2+ 9 = 0
đặt x2 = t ( t ? 0 )
ta có 3t2- 12t + 9 = 0
Vì a + b + c = 3 - 12 + 9 = 0 ? t1 = 1 ; t2 =
t1 = x2 = 1 ? x = 1
t2 = x2 = ? x =
Vậy PT có 4 nghiệm x = 1 và x =
Bµi tËp 56 /Sgk - 63
? - B1: Đặt t = x2, (t ? 0) đưa về PT bậc hai.
- B2: Giải PT bậc hai ẩn t
- B3: Thay giá trị của t tìm được vào B1.
? b) 2x4 + 3x2 - 2 = 0 đặt x2 = t (t ? 0)
ta có 2t2 + 3t - 2 = 0
= 9 + 16 = 25 > 0 nên pt có 2 nghiệm phân biệt
? t1 =
t2= ( Loại )
t = x2 = ? x =
Vậy PT có 2 nghiệm x =
ý c, về nhà thực hiện
Bµi 57/ sgk-63
c,
ĐKXĐ : x ? 0 và x ? 2
x2 = 10 - 2x
x2 + 2x- 10= 0
?`= 1 + 10 = 11 > 0 nên pt có 2 nghiệm phân biệt
x1 = -1 + ; x2 = -1 -
Bài tập hướng dẫn
Bµi tËp 58 /Sgk - 63
a, 1.2x3 - x2 - 0.2x = 0
? x ( 1.2x2 - x - 0.2) = 0
b, 5x3 - x2 -5x + 1 = 0
? ( 5x3 - 5x )- ( x2 -1 ) = 0
? 5x (x2 - 1 ) - ( x2 - 1 ) = 0
? ( x2 - 1 ) ( 5x - 1) = 0
? (x+1) ( x - 1) ( 5x - 1) = 0
Giải PT bậc 3
- Phân tích vế trái thành nhân tử
- Đưa về dạng PT tích.
Bµi tËp 59 /Sgk - 63
Giải PT bằng cách đặt ẩn phụ đưa về PT bậc 2
a) 2(x2 – 2x)2 + 3(x2 – 2x ) + 1 = 0 ( I )
§Æt x2 – 2x = t
( I ) 2t2 +3t +1 =0
Đặt
( II)
( II)
giáo viên dạy giỏi
năm học 2009 - 2010
kính chúc các thầy cô mạnh khoẻ, hạnh phúc.
xin trân trọng cảm ơn.
Các thầy cô giáo về dự giờ
lớp 9A
năm học 2009 - 2010
Th? 7 ngy 10 thỏng 04 nam 2010
Hàm số y = ax2,
(a ? 0)
Hệ thức Vi-et và
ứng dụng
Phương trình bậc hai
ax2+ bx + c = 0,
(a ? 0)
Những kiến thức cơ bản
Tiết 64 Ôn tập chương IV
? Hàm số y = ax2, (a ? 0).
?Phương trình bậc hai một ẩn.
Hàm số y = ax2 có đặc điểm gì ?
a > 0
a < 0
Hàm số nghịch biến khi x < 0 , đồng biến khi x > 0
GTNN của hàm số bằng 0 khi x = 0
Hàm số đồng biến khi x < 0 , nghịch biến khi x > 0
GTLN của hàm số bằng 0 khi x = 0
Hãy nêu công thức nghiệm của PT: ax2 + bx + c = 0, (a ? 0) ?
∆ = b2 – 4ac
∆’ = (b’)2 – ac (víi b = 2b’)
∆ > 0: PT cã 2 nghiÖm
ph©n biÖt x1,2
∆’ = 0: PT cã nghiÖm
kÐp x1= x2 =
∆ < 0: PT v« nghiÖm
∆’> 0: PT cã 2 nghiÖm
ph©n biÖt x1,2 =
∆ = 0: PT cã nghiÖm
kÐp x1= x2 =
∆’ < 0: PT v« nghiÖm
Bài tập vận dụng
Bµi tËp 55 /Sgk - 63
a, x2 - x - 2 = 0
có a = 1, b = -1 , c = -2
Vì a - b + c = 1 - ( - 1) + (- 2 ) = 0 nên pt có nghiệm
x1 = -1 ; x2 = 2
b) Vẽ đồ thị hàm số y = x2 và y = x + 2
c) Hoành độ giao điểm của đồ thị hàm số
y = x2 và y = x + 2 chính là nghiệm của pt:
x2 = x + 2 hay x2 - x - 2 = 0
?Giải PT trùng phương ax4+bx2+c=0 (a ? 0).
a, 3x4 - 12x2+ 9 = 0
đặt x2 = t ( t ? 0 )
ta có 3t2- 12t + 9 = 0
Vì a + b + c = 3 - 12 + 9 = 0 ? t1 = 1 ; t2 =
t1 = x2 = 1 ? x = 1
t2 = x2 = ? x =
Vậy PT có 4 nghiệm x = 1 và x =
Bµi tËp 56 /Sgk - 63
? - B1: Đặt t = x2, (t ? 0) đưa về PT bậc hai.
- B2: Giải PT bậc hai ẩn t
- B3: Thay giá trị của t tìm được vào B1.
? b) 2x4 + 3x2 - 2 = 0 đặt x2 = t (t ? 0)
ta có 2t2 + 3t - 2 = 0
= 9 + 16 = 25 > 0 nên pt có 2 nghiệm phân biệt
? t1 =
t2= ( Loại )
t = x2 = ? x =
Vậy PT có 2 nghiệm x =
ý c, về nhà thực hiện
Bµi 57/ sgk-63
c,
ĐKXĐ : x ? 0 và x ? 2
x2 = 10 - 2x
x2 + 2x- 10= 0
?`= 1 + 10 = 11 > 0 nên pt có 2 nghiệm phân biệt
x1 = -1 + ; x2 = -1 -
Bài tập hướng dẫn
Bµi tËp 58 /Sgk - 63
a, 1.2x3 - x2 - 0.2x = 0
? x ( 1.2x2 - x - 0.2) = 0
b, 5x3 - x2 -5x + 1 = 0
? ( 5x3 - 5x )- ( x2 -1 ) = 0
? 5x (x2 - 1 ) - ( x2 - 1 ) = 0
? ( x2 - 1 ) ( 5x - 1) = 0
? (x+1) ( x - 1) ( 5x - 1) = 0
Giải PT bậc 3
- Phân tích vế trái thành nhân tử
- Đưa về dạng PT tích.
Bµi tËp 59 /Sgk - 63
Giải PT bằng cách đặt ẩn phụ đưa về PT bậc 2
a) 2(x2 – 2x)2 + 3(x2 – 2x ) + 1 = 0 ( I )
§Æt x2 – 2x = t
( I ) 2t2 +3t +1 =0
Đặt
( II)
( II)
giáo viên dạy giỏi
năm học 2009 - 2010
kính chúc các thầy cô mạnh khoẻ, hạnh phúc.
xin trân trọng cảm ơn.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyên Văn Sơn
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)