Ôn tập Chương IV. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
Chia sẻ bởi Nguyễn Thị Ánh Tuyết |
Ngày 05/05/2019 |
39
Chia sẻ tài liệu: Ôn tập Chương IV. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn thuộc Đại số 9
Nội dung tài liệu:
TRƯỜNG THCS LỘC HƯNG
Giáo viên: NGUYỄN THỊ ÁNH TUYẾT
TIẾT 64 : ÔN TẬP CHƯƠNG IV
Với a>0 : Hàm số y= ax2 nghịch biến khi x<0; đồng biến
khi x>0; y = 0 là giá trị nhỏ nhất của hàm số,
đạt được khi x = 0.
-Với a<0: hàm số y= ax2 đồng biến khi x<0; nghịch biến
khi x>0, y = 0 là giá trị lớn nhất của hàm số,
đạt được khi x = 0
I. Lý thuyết
1. Tớnh chaỏt vaứ ủo thũ haứm soỏ y = ax2
Tiết 64: ÔN TậP chương IV
1.1Tính chất:
1.2 ẹo thũ haứm soỏ y = ax2
Đồ thị hàm số y = ax2 là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parapol với đỉnh O.
Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.
Nếu a < 0 thì đồ thị nằm phía trên trục hoành, O là điểm cao nhất của đồ thị.
-Nếu ?>0 thì phương trình có hai nghiệm phân biệt:
-Nếu ?`>0 phương trình có hai nghiệm phân biệt:
(b=2b`)
2. Phương trình bậc hai ax 2+ bx + c = 0 (a?0)
C/thức nghiệm tổng quát
C/thức nghiệm thu gọn
I. Lý thuyết
1. Tớnh chaỏt vaứ ủo thũ haứm soỏ y = ax2
Tiết 64: ÔN TậP chương IV
2. Phương trình bậc hai ax 2+ bx + c = 0 (a?0)
I. Lý thuyết
1. Hàm số y = ax2
Tiết 64: ÔN TậP chương IV
3. Hệ thức Viét và ứng dụng
3. Hệ thức Viét và ứng dụng
Điền vào chỗ trống để được các khẳng định đúng.
Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ? 0) thì :
-Muốn tìm hai số u và v biết u + v = S, u.v = P, ta giải phương trình ...............................................
điều kiện để có u và v là .......................
- Nếu a + b +c = 0 thì phương trình ax2 + bx + c = 0 ( a ? 0 ) có hai nghiệm
x1 = .....; x2 = ....
-Nếu .........................thì phương trình ax2 + bx + c = 0 ( a ? 0 ) có hai nghiệm
x1 = -1; x2 = ....
x2 - Sx + P = 0
1
a - b + c = 0
2. Phương trình bậc hai ax 2+ bx + c = 0 (a?0)
I. Lý thuyết
1. Hàm số y = ax2
Tiết 64: ÔN TậP chương IV
3. Hệ thức Viét và ứng dụng
II. Bài tập
II. Bài tập
I. Lý thuyết
Tiết 64: ÔN TậP chương IV
1- Bài 55( Tr 63-SGK):
Cho phương trình: x2-x-2=0
Giải phương trình?
b)Vẽ hai đồ thị y = x2 , y = x +2 trên cùng mặt phẳng tọa độ
c) Chửựng toỷ raống hai nghieọm tỡm ủửụùc ụỷ caõu a) laứ hoaứnh ủoọ giao ủieồm cuỷa hai ủo thũ.
là giao điểm của hai đồ thị y=x2và y=x+2
2. Bài 56 / 63-Sgk: Gi?i phương trình
a) 3x4 - 12x2 + 9 = 0
Tiết 64: ÔN TậP chương IV
Đặt t =x2 0
3. Bài 57 / 63 SGK: Giải các phương trình
a) 5x2 - 3x +1 = 2x +11
c)
Bài tập mới
Cho phương trình x2 - 4x + m+1 =0 (1), với m là tham số.
Tìm các giá trị của m để phương trình ( 1) có hai nghiệm x1 , x2 thỏa mãn ( x1 - x2 )2 = 4
Tiết 64: ÔN TậP chương IV
Phương trình có nghiệm khi m 3
m =2 ( thỏa mãn m 3)
2/
3/
III. BÀI HỌC KINH NGHIỆM
Nếu phương trình bậc hai ax2 +bx +c = 0 ( a 0) có hai nghiệm x1 và x2. Gọi S là tổng hai nghiệm, P là tích hai nghiệm thì:
1/
Tiết 64: ÔN TậP chương IV
HƯỚNG DẪN HỌC TẬP
Đối với bài học này:
L thuyt: Xem lại phần lý thuyết đã ôn tập.
Hoàn thành các bài tập 56; 57; 58; 62 trang 63; 64 SGK
-Hu?ng d?n bài 62 trang 64
Đối với bài học tiếp theo: n tp học kỳII
( Xem li ni dung chng III)
Tiết 64: ÔN TậP chương IV
Bài 62/ 64 SGK
a) Với giá trị nào của m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình theo m
Cho phương trình
Tiết 64: ÔN TậP chương IV
HƯỚNG DẪN BÀI 62 / 64
Từ phương trình:
a)Tính
Bằng phương pháp biến đổi biểu thức ta thu được phương trình luôn có 2 nghiệm với mọi m
b)Theo hệ thức Vi- ét ta có
Tiết 64: ÔN TậP chương IV
Giáo viên: NGUYỄN THỊ ÁNH TUYẾT
TIẾT 64 : ÔN TẬP CHƯƠNG IV
Với a>0 : Hàm số y= ax2 nghịch biến khi x<0; đồng biến
khi x>0; y = 0 là giá trị nhỏ nhất của hàm số,
đạt được khi x = 0.
-Với a<0: hàm số y= ax2 đồng biến khi x<0; nghịch biến
khi x>0, y = 0 là giá trị lớn nhất của hàm số,
đạt được khi x = 0
I. Lý thuyết
1. Tớnh chaỏt vaứ ủo thũ haứm soỏ y = ax2
Tiết 64: ÔN TậP chương IV
1.1Tính chất:
1.2 ẹo thũ haứm soỏ y = ax2
Đồ thị hàm số y = ax2 là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một parapol với đỉnh O.
Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.
Nếu a < 0 thì đồ thị nằm phía trên trục hoành, O là điểm cao nhất của đồ thị.
-Nếu ?>0 thì phương trình có hai nghiệm phân biệt:
-Nếu ?`>0 phương trình có hai nghiệm phân biệt:
(b=2b`)
2. Phương trình bậc hai ax 2+ bx + c = 0 (a?0)
C/thức nghiệm tổng quát
C/thức nghiệm thu gọn
I. Lý thuyết
1. Tớnh chaỏt vaứ ủo thũ haứm soỏ y = ax2
Tiết 64: ÔN TậP chương IV
2. Phương trình bậc hai ax 2+ bx + c = 0 (a?0)
I. Lý thuyết
1. Hàm số y = ax2
Tiết 64: ÔN TậP chương IV
3. Hệ thức Viét và ứng dụng
3. Hệ thức Viét và ứng dụng
Điền vào chỗ trống để được các khẳng định đúng.
Nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ? 0) thì :
-Muốn tìm hai số u và v biết u + v = S, u.v = P, ta giải phương trình ...............................................
điều kiện để có u và v là .......................
- Nếu a + b +c = 0 thì phương trình ax2 + bx + c = 0 ( a ? 0 ) có hai nghiệm
x1 = .....; x2 = ....
-Nếu .........................thì phương trình ax2 + bx + c = 0 ( a ? 0 ) có hai nghiệm
x1 = -1; x2 = ....
x2 - Sx + P = 0
1
a - b + c = 0
2. Phương trình bậc hai ax 2+ bx + c = 0 (a?0)
I. Lý thuyết
1. Hàm số y = ax2
Tiết 64: ÔN TậP chương IV
3. Hệ thức Viét và ứng dụng
II. Bài tập
II. Bài tập
I. Lý thuyết
Tiết 64: ÔN TậP chương IV
1- Bài 55( Tr 63-SGK):
Cho phương trình: x2-x-2=0
Giải phương trình?
b)Vẽ hai đồ thị y = x2 , y = x +2 trên cùng mặt phẳng tọa độ
c) Chửựng toỷ raống hai nghieọm tỡm ủửụùc ụỷ caõu a) laứ hoaứnh ủoọ giao ủieồm cuỷa hai ủo thũ.
là giao điểm của hai đồ thị y=x2và y=x+2
2. Bài 56 / 63-Sgk: Gi?i phương trình
a) 3x4 - 12x2 + 9 = 0
Tiết 64: ÔN TậP chương IV
Đặt t =x2 0
3. Bài 57 / 63 SGK: Giải các phương trình
a) 5x2 - 3x +1 = 2x +11
c)
Bài tập mới
Cho phương trình x2 - 4x + m+1 =0 (1), với m là tham số.
Tìm các giá trị của m để phương trình ( 1) có hai nghiệm x1 , x2 thỏa mãn ( x1 - x2 )2 = 4
Tiết 64: ÔN TậP chương IV
Phương trình có nghiệm khi m 3
m =2 ( thỏa mãn m 3)
2/
3/
III. BÀI HỌC KINH NGHIỆM
Nếu phương trình bậc hai ax2 +bx +c = 0 ( a 0) có hai nghiệm x1 và x2. Gọi S là tổng hai nghiệm, P là tích hai nghiệm thì:
1/
Tiết 64: ÔN TậP chương IV
HƯỚNG DẪN HỌC TẬP
Đối với bài học này:
L thuyt: Xem lại phần lý thuyết đã ôn tập.
Hoàn thành các bài tập 56; 57; 58; 62 trang 63; 64 SGK
-Hu?ng d?n bài 62 trang 64
Đối với bài học tiếp theo: n tp học kỳII
( Xem li ni dung chng III)
Tiết 64: ÔN TậP chương IV
Bài 62/ 64 SGK
a) Với giá trị nào của m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình theo m
Cho phương trình
Tiết 64: ÔN TậP chương IV
HƯỚNG DẪN BÀI 62 / 64
Từ phương trình:
a)Tính
Bằng phương pháp biến đổi biểu thức ta thu được phương trình luôn có 2 nghiệm với mọi m
b)Theo hệ thức Vi- ét ta có
Tiết 64: ÔN TậP chương IV
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thị Ánh Tuyết
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)