Ôn tập Chương III. Tam giác đồng dạng
Chia sẻ bởi Phạm Hồng Ánh |
Ngày 04/05/2019 |
48
Chia sẻ tài liệu: Ôn tập Chương III. Tam giác đồng dạng thuộc Hình học 8
Nội dung tài liệu:
TRƯỜNG THCS LÊ QUÝ ĐÔN
Kính chào quý thầy cô giáo
và các em học sinh
về dự giờ
GV: Nguy?n Th? nh Tuy?t
?1 Cho AB = 5cm, CD = 8cm, A’B’ = 6cm, C’D’ = 10cm thì AB và CD tỉ lệ với A’B’ và C’D’đúng hay sai?
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
?2: Cho hình vẽ:
Nếu a // BC thì
2. Định lý Ta – lét
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
B’
?3: Cho hình vẽ biết a // BC thì
* Hệ quả của định lý Ta – lét:
Cho ABC có
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
?4: Độ dài x, y của các đoạn thẳng AE, BC trong hình 1 là:
Hình 1
DE // BC
C
A. x = 2,4; y = 10
B. x = 2,5; y = 12
C. x = 2,4; y = 8,75
D. x = 2,5; y = 8,5
Cho ABC có
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1, Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
?5: Cho hình vẽ biết AD là tia phân giác của góc A thì
tỉ số
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
Cho tam giác ABC vuông tại A, AB = 42cm, AC=56 cm. Đường phân giác AD của góc A (D BC). Từ D kẻ DE vuông góc với AC (E AC). Tính BC, DB, DC, ED
II. BÀI TẬP:
Giải
Xét ∆ABC ( A = 90O):
Ta có: BC2 = AB2 + AC2 (đlý Pytago) BC2 = 422 + 562 = 4900 BC = 70 (cm)
Ta có AD là tia phân giác của góc BAC
DB = 3.10 = 30(cm)
DC = 4.10 = 40(cm)
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
II. BÀI TẬP:
D
E
42cm
56cm
B
A
C
Giải
Ta có AD là tia phân giác của góc BAC
DB = 3.10 = 30(cm)
DC = 4.10 = 40(cm)
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
A. 60o
B. 50o
C. 40o
D. 30o
4. Tam giác đồng dạng:
Tính chất:
Định nghĩa:
Ba trường hợp đồng dạng của hai tam giác: c-c-c; c-g-c; g-g
- h’, h là hai đường cao tương ứng
của hai tam giác
- P’, P là hai chu vi của hai tam giác
- S’, S là diện tích của hai tam giác
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2, Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
4. Tam giác đồng dạng:
Tính chất:
Định nghĩa:
Ba trường hợp đồng dạng của hai tam giác: c-c-c; c-g-c; g-g
Cho tam giác ABC vuông tại A, AB = 42cm, AC=56 cm. Đường phân giác AD của góc A (D BC). Từ D kẻ DE vuông góc với AC (E AC). a, Tính BC, DB, DC, ED
II. BÀI TẬP:
b) Chứng minh: ∆ABC đồng dạng với ∆EDC
c) Tính diện tích tam giác EDC.
1
Thales
(624-547 tr.CN)
Talet (Thales) là một trong những nhà hình học đầu tiên của Hy Lạp. Hồi còn trẻ có lần ông đã sang Ai Cập và tiếp xúc các nhà khoa học đương thời . Talet đã giải được bài toán đo chiều cao của Kim tự tháp bằngcách hết sức đơn giản nhờ vào tính chất của tam giác đồng dạng .Việc này tưởng như đơn giản thì lúc đó lại có ý nghĩa vĩ đại
Câu 1: Hai tam giác vuông cân luôn đồng dạng với nhau?
a. Đúng
b. Sai
Câu 2: Nếu ABC DEF theo tỉ số là 2 thì DEF ABC theo tỉ số là:
S
a. 2
b. 0,5
c. 1
d. 0,25
S
a. 30cm2
b. 40cm2
c. 45cm2
d. 60cm2
Câu 3: Nếu ABC DEF biết
và SABC = 20cm2.
Khi đó SDEF bằng:
S
Đội bạn được nhận một phần quà!
Chúc mừng
Câu 5: Cho hình 2 có . Độ dài x của đoạn thẳng NI là:
A. x =
B. x =
C. x =
D. x =
Hình 2
Câu 6: Hai tam giác cân thì đồng dạng với nhau?
a. Đúng
b. Sai
Câu 7: Nếu theo tỉ số là 3 thì tỉ số chu vi của hai tam giác này là:
S
a. 9
b.
c. 6
d. 3
Xem lại toàn bộ lý thuyết
Xem lại lời giải bài tập đã sửa
Làm bài tập : 58, 59, 60, 61 SGK trang 92
Tiết sau kiểm tra 1 tiết
Hướng dẫn về nhà
XIN CHÂN THÀNH CÁM ƠN QUÝ THẦY CÔ GIÁO VÀ TẤT CẢ CÁC EM HỌC SINH.
HẸN GẶP LẠI!
Kính chào quý thầy cô giáo
và các em học sinh
về dự giờ
GV: Nguy?n Th? nh Tuy?t
?1 Cho AB = 5cm, CD = 8cm, A’B’ = 6cm, C’D’ = 10cm thì AB và CD tỉ lệ với A’B’ và C’D’đúng hay sai?
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
?2: Cho hình vẽ:
Nếu a // BC thì
2. Định lý Ta – lét
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
B’
?3: Cho hình vẽ biết a // BC thì
* Hệ quả của định lý Ta – lét:
Cho ABC có
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
?4: Độ dài x, y của các đoạn thẳng AE, BC trong hình 1 là:
Hình 1
DE // BC
C
A. x = 2,4; y = 10
B. x = 2,5; y = 12
C. x = 2,4; y = 8,75
D. x = 2,5; y = 8,5
Cho ABC có
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1, Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
?5: Cho hình vẽ biết AD là tia phân giác của góc A thì
tỉ số
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
Cho tam giác ABC vuông tại A, AB = 42cm, AC=56 cm. Đường phân giác AD của góc A (D BC). Từ D kẻ DE vuông góc với AC (E AC). Tính BC, DB, DC, ED
II. BÀI TẬP:
Giải
Xét ∆ABC ( A = 90O):
Ta có: BC2 = AB2 + AC2 (đlý Pytago) BC2 = 422 + 562 = 4900 BC = 70 (cm)
Ta có AD là tia phân giác của góc BAC
DB = 3.10 = 30(cm)
DC = 4.10 = 40(cm)
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
II. BÀI TẬP:
D
E
42cm
56cm
B
A
C
Giải
Ta có AD là tia phân giác của góc BAC
DB = 3.10 = 30(cm)
DC = 4.10 = 40(cm)
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2. Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
A. 60o
B. 50o
C. 40o
D. 30o
4. Tam giác đồng dạng:
Tính chất:
Định nghĩa:
Ba trường hợp đồng dạng của hai tam giác: c-c-c; c-g-c; g-g
- h’, h là hai đường cao tương ứng
của hai tam giác
- P’, P là hai chu vi của hai tam giác
- S’, S là diện tích của hai tam giác
TIẾT 53: ÔN TẬP CHƯƠNG III
AB, CD tỷ lệ với A’B’, C’D’
<=>
I. LÝ THUYẾT
1. Đoạn thẳng tỉ lệ:
2, Định lý Ta – lét
* Hệ quả của định lý Ta – lét:
Cho ABC có
3. Tính chất đường phân giác của tam giác:
AD là tia phân giác của góc BAC
AE là tia phân giác của góc BAx
4. Tam giác đồng dạng:
Tính chất:
Định nghĩa:
Ba trường hợp đồng dạng của hai tam giác: c-c-c; c-g-c; g-g
Cho tam giác ABC vuông tại A, AB = 42cm, AC=56 cm. Đường phân giác AD của góc A (D BC). Từ D kẻ DE vuông góc với AC (E AC). a, Tính BC, DB, DC, ED
II. BÀI TẬP:
b) Chứng minh: ∆ABC đồng dạng với ∆EDC
c) Tính diện tích tam giác EDC.
1
Thales
(624-547 tr.CN)
Talet (Thales) là một trong những nhà hình học đầu tiên của Hy Lạp. Hồi còn trẻ có lần ông đã sang Ai Cập và tiếp xúc các nhà khoa học đương thời . Talet đã giải được bài toán đo chiều cao của Kim tự tháp bằngcách hết sức đơn giản nhờ vào tính chất của tam giác đồng dạng .Việc này tưởng như đơn giản thì lúc đó lại có ý nghĩa vĩ đại
Câu 1: Hai tam giác vuông cân luôn đồng dạng với nhau?
a. Đúng
b. Sai
Câu 2: Nếu ABC DEF theo tỉ số là 2 thì DEF ABC theo tỉ số là:
S
a. 2
b. 0,5
c. 1
d. 0,25
S
a. 30cm2
b. 40cm2
c. 45cm2
d. 60cm2
Câu 3: Nếu ABC DEF biết
và SABC = 20cm2.
Khi đó SDEF bằng:
S
Đội bạn được nhận một phần quà!
Chúc mừng
Câu 5: Cho hình 2 có . Độ dài x của đoạn thẳng NI là:
A. x =
B. x =
C. x =
D. x =
Hình 2
Câu 6: Hai tam giác cân thì đồng dạng với nhau?
a. Đúng
b. Sai
Câu 7: Nếu theo tỉ số là 3 thì tỉ số chu vi của hai tam giác này là:
S
a. 9
b.
c. 6
d. 3
Xem lại toàn bộ lý thuyết
Xem lại lời giải bài tập đã sửa
Làm bài tập : 58, 59, 60, 61 SGK trang 92
Tiết sau kiểm tra 1 tiết
Hướng dẫn về nhà
XIN CHÂN THÀNH CÁM ƠN QUÝ THẦY CÔ GIÁO VÀ TẤT CẢ CÁC EM HỌC SINH.
HẸN GẶP LẠI!
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Hồng Ánh
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)