Ôn HSG Phương trình nghiệm nguyên
Chia sẻ bởi Phạm Văn Kiên |
Ngày 13/10/2018 |
55
Chia sẻ tài liệu: Ôn HSG Phương trình nghiệm nguyên thuộc Đại số 9
Nội dung tài liệu:
PHƯƠNG TRÌNH NGHIỆM NGUYÊN
a) LÍ THUYẾT
1a . Phép chia hết và phép chia có dư
1a.1) Hai số nguyên a và b ( b>0) . Khi chia a cho b ta có a chia hết cho b hoặc a không chia hết cho b
+ a chía hết cho b , kí hiêu a b .ta củng nói b chia hết a hay b là một ước của a , a là bội của b .
+ Định nghĩa : có số nguyên q sao cho a = bq
+ a không chia hết cho b thì khi chia a cho b ta được thương là q và số dư là r ( 0 < r < b) và viết : a = bq + r với 0 < r < b .
Tổng quát :
+ Với hai số nguyên a và b ( b > 0 ) luôn có hai số nguyên q và r ( 0 ≤ r < b) sao cho a = bq + r . Nếu r = 0 thì a chia hết cho b . Nếu r ≠ 0 thì a không chia hết cho b
+ Khi chia số nguyên a cho số nguyên b ( b >0) thì số dư r là một trong các b số từ 0 đến b – 1 .
1a.2) Ước chung lớn nhất và bội chung nhỏ nhất
+ Định nghĩa :
- Số nguyên d là ước chung của a và b nếu d là ước của a và d là ước của b .
- Số nguyên dương lớn nhất trong tập hợp các ước chuung của a và b gọi là ước chung lướn nhất của a và b .Ước chung lớn nhất của a và b kí hiêu là ƯCLN(a ,b) hay (a,b) .
- Số nguyên m là bội chung của a và b nếu m a và m b.
- Số nguyên dương nhỏ nhất trong tập hợp các bội chung của a, và b gọi la bội chung nhỏ nhất của a và b . Bội chung nhỏ nhất của a và b kí hiêu là BCNN(a, b) hay [a , b]
1a.3) Các tính chất về chia hết
+ Nếu (a, b) = 1 thì gọi a, b là hai số nguyên tố cùng nhau
+ Số nguyên tố là số lớn hơn 1 chỉ có hai ước là 1 và chính nó
Định lí cơ bản : Mội số nguyên lớn hơn 1 đều phân tích được ra thừa số nguyên tố một cách duy nhất ( không kể thứ tự các thừa số) .
Định lí 1 : vơi a, b, c là các số nguyên dương
( ac , bc) = c(a,b)
với c là ƯC(a, b)
Định lí 2 : và (a,b) = 1 c b
Định lí 3 : , và (a,b) = 1 c
Định lí 4: Nếu (a, b) =d thì tồn tại hai số nguyên x0 , y0 sao cho
ax0 + by0 = d , x0 , y0 được xác định bằng thuật toán Ơ-clit
Thuật toán Ơ-clit :
a = bq + r với 0 ≤ r ≤ b – 1 thì (a,b) = (b, r)
2a. Đa thức :
+ Định nghĩa đơn thức : sgk lớp 7
+ Định nghĩa đa thức : sgk lớp 7
+Các hằng đẳng thức đáng nhớ :
(a b)2 = a2 2ab + b2
a2 – b2 = (a + b )( a – b )
( a b)3 = a3 3a2b + 3ab2 b3
a3 b3 = ( a b)( a2 ab + b2)
+ Phân tích đa thức thành các nhân tử
3a. Lũy thừa với số mũ là số tự nhiên : sgk lớp 7
+ Định nghĩa
+ Các phép toán
+ Tính chất
4a. Phân thức
+ Định nghĩa : sgk lớp 8
5a . Các phép biến đổi phương trình
+ Định nghĩa phương trình nhiều biến : sgk lớp 8
+ Định nghĩa nghiệm của phương trình : sgk lớp 8
+ Định nghĩa hai phương trình tương đương sgk lớp 8
+ Các phép đổi phương trình : sgk lớp 8
Phép chuyễn vế các hạn tử
Phép nhân một cố khác 0
+ Phương trình bậc hai và cách giải : sgk lớp 9
6a. Căn thức bậc hai : sgk lớp 9
+ Định nghĩa
+ Các phép biến đổi
b) CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGHUYÊN VÀ PHƯƠNG PHÁP GIẢI
1b. Phương trình bậc nhất hai ẩn ax + by = c (*) trong đó a,b nguyên khác 0
Cách giải 1:
+ Nếu
a) LÍ THUYẾT
1a . Phép chia hết và phép chia có dư
1a.1) Hai số nguyên a và b ( b>0) . Khi chia a cho b ta có a chia hết cho b hoặc a không chia hết cho b
+ a chía hết cho b , kí hiêu a b .ta củng nói b chia hết a hay b là một ước của a , a là bội của b .
+ Định nghĩa : có số nguyên q sao cho a = bq
+ a không chia hết cho b thì khi chia a cho b ta được thương là q và số dư là r ( 0 < r < b) và viết : a = bq + r với 0 < r < b .
Tổng quát :
+ Với hai số nguyên a và b ( b > 0 ) luôn có hai số nguyên q và r ( 0 ≤ r < b) sao cho a = bq + r . Nếu r = 0 thì a chia hết cho b . Nếu r ≠ 0 thì a không chia hết cho b
+ Khi chia số nguyên a cho số nguyên b ( b >0) thì số dư r là một trong các b số từ 0 đến b – 1 .
1a.2) Ước chung lớn nhất và bội chung nhỏ nhất
+ Định nghĩa :
- Số nguyên d là ước chung của a và b nếu d là ước của a và d là ước của b .
- Số nguyên dương lớn nhất trong tập hợp các ước chuung của a và b gọi là ước chung lướn nhất của a và b .Ước chung lớn nhất của a và b kí hiêu là ƯCLN(a ,b) hay (a,b) .
- Số nguyên m là bội chung của a và b nếu m a và m b.
- Số nguyên dương nhỏ nhất trong tập hợp các bội chung của a, và b gọi la bội chung nhỏ nhất của a và b . Bội chung nhỏ nhất của a và b kí hiêu là BCNN(a, b) hay [a , b]
1a.3) Các tính chất về chia hết
+ Nếu (a, b) = 1 thì gọi a, b là hai số nguyên tố cùng nhau
+ Số nguyên tố là số lớn hơn 1 chỉ có hai ước là 1 và chính nó
Định lí cơ bản : Mội số nguyên lớn hơn 1 đều phân tích được ra thừa số nguyên tố một cách duy nhất ( không kể thứ tự các thừa số) .
Định lí 1 : vơi a, b, c là các số nguyên dương
( ac , bc) = c(a,b)
với c là ƯC(a, b)
Định lí 2 : và (a,b) = 1 c b
Định lí 3 : , và (a,b) = 1 c
Định lí 4: Nếu (a, b) =d thì tồn tại hai số nguyên x0 , y0 sao cho
ax0 + by0 = d , x0 , y0 được xác định bằng thuật toán Ơ-clit
Thuật toán Ơ-clit :
a = bq + r với 0 ≤ r ≤ b – 1 thì (a,b) = (b, r)
2a. Đa thức :
+ Định nghĩa đơn thức : sgk lớp 7
+ Định nghĩa đa thức : sgk lớp 7
+Các hằng đẳng thức đáng nhớ :
(a b)2 = a2 2ab + b2
a2 – b2 = (a + b )( a – b )
( a b)3 = a3 3a2b + 3ab2 b3
a3 b3 = ( a b)( a2 ab + b2)
+ Phân tích đa thức thành các nhân tử
3a. Lũy thừa với số mũ là số tự nhiên : sgk lớp 7
+ Định nghĩa
+ Các phép toán
+ Tính chất
4a. Phân thức
+ Định nghĩa : sgk lớp 8
5a . Các phép biến đổi phương trình
+ Định nghĩa phương trình nhiều biến : sgk lớp 8
+ Định nghĩa nghiệm của phương trình : sgk lớp 8
+ Định nghĩa hai phương trình tương đương sgk lớp 8
+ Các phép đổi phương trình : sgk lớp 8
Phép chuyễn vế các hạn tử
Phép nhân một cố khác 0
+ Phương trình bậc hai và cách giải : sgk lớp 9
6a. Căn thức bậc hai : sgk lớp 9
+ Định nghĩa
+ Các phép biến đổi
b) CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGHUYÊN VÀ PHƯƠNG PHÁP GIẢI
1b. Phương trình bậc nhất hai ẩn ax + by = c (*) trong đó a,b nguyên khác 0
Cách giải 1:
+ Nếu
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Văn Kiên
Dung lượng: 391,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)