Ng Cog thach

Chia sẻ bởi Nguyễn Công Thạch | Ngày 13/10/2018 | 39

Chia sẻ tài liệu: Ng Cog thach thuộc Đại số 9

Nội dung tài liệu:


Đề số 1
Câu 1 ( 3 điểm )
Cho biểu thức :

Tìm điều kiện của x để biểu thức A có nghĩa .
Rút gọn biểu thức A .
Giải phơng trình theo x khi A = -2 .
Câu 2 ( 1 điểm )
Giải phơng trình :

Câu 3 ( 3 điểm )
Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đờng thẳng (D) : y = - 2(x +1) .
Điểm A có thuộc (D) hay không ?
Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A .
Viết phơng trình đờng thẳng đi qua A và vuông góc với (D) .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD cố định , có độ dài cạnh là a .E là điểm đi chuyển trên đoạn CD ( E khác D ) , đờng thẳng AE cắt đờng thẳng BC tại F , đờng thẳng vuông góc với AE tại A cắt đờng thẳng CD tại K .
Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK vuông cân .
Gọi I là trung điểm của FK , Chứng minh I là tâm đờng tròn đi qua A , C, F , K .
Tính số đo góc AIF , suy ra 4 điểm A , B , F , I cùng nằm trên một đờng tròn .










Đề số 2
Câu 1 ( 2 điểm )
Cho hàm số : y = 
Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số.
Lập phơng trình đờng thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên .
Câu 2 ( 3 điểm )
Cho phơng trình : x2 – mx + m – 1 = 0 .
Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức .
 . Từ đó tìm m để M > 0 .
Tìm giá trị của m để biểu thức P =  đạt giá trị nhỏ nhất .
Câu 3 ( 2 điểm )
Giải phơng trình :


Câu 4 ( 3 điểm )
Cho hai đờng tròn (O1) và (O2) có bán kính bằng R cắt nhau tại A và B , qua A vẽ cát tuyến cắt hai đờng tròn (O1) và (O2) thứ tự tại E và F , đờng thẳng EC , DF cắt nhau tại P .
Chứng minh rằng : BE = BF .
Một cát tuyến qua A và vuông góc với AB cắt (O1) và (O2) lần lợt tại C,D . Chứng minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF .
Tính diện tích phần giao nhau của hai đờng tròn khi AB = R .











Đề số 3
Câu 1 ( 3 điểm )
Giải bất phơng trình : 
Tìm giá trị nguyên lớn nhất của x thoả mãn .

Câu 2 ( 2 điểm )
Cho phơng trình : 2x2 – ( m+ 1 )x +m – 1 = 0
Giải phơng trình khi m = 1 .
Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng .
Câu3 ( 2 điểm )
Cho hàm số : y = ( 2m + 1 )x – m + 3 (1)
Tìm m biết đồ thị hàm số (1) đi qua điểm A ( -2 ; 3 ) .
Tìm điểm cố định mà
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Công Thạch
Dung lượng: 3,44MB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)