Lung tung de vao 10

Chia sẻ bởi Phạm Thị Hồng Hạnh | Ngày 13/10/2018 | 36

Chia sẻ tài liệu: lung tung de vao 10 thuộc Đại số 9

Nội dung tài liệu:


ĐỀ SỐ 1
ĐỀ THI TUYỂN SINH LỚP 10 THPT
MÔN: TOÁN

Bài 1: Rút gọn biểu thức:
a, A =  ( với a > 0; a  1) b, B =  (với a > 0; a  1)
Bài 2: Cho hệ phương trình: 
a) Giải hệ phương trình khi m = 2 b) Giải hệ phương trình theo tham số m
c) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn x + y =- 1
d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
Bài 3:. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng:
Tứ giác CEHD, nội tiếp .
Bốn điểm B,C,E,F cùng nằm trên một đường tròn.
AE.AC = AH.AD; AD.BC = BE.AC.
H và M đối xứng nhau qua BC.
Xác định tâm đường tròn nội tiếp tam giác DEF.
Bài 4: Cho: a,b,c là các số thực không âm thỏa mãn: a+b+c = 1.
Tìm giá trị lớn nhất của biểu thức: P = 
ĐỀ SỐ 2
Bài 1: Cho biểu thức:  ( với a > 0; a  4)
a, Rút gọn biểu thức P
b, Tính giá trị biểu thức P khi a = 9
Bài 2: Cho hàm số bậc nhất y = ax + 5
a) Tìm a để đồ thị hàm số đi qua điểm A (-2; 3)
b) Vẽ đồ thị hàm số vừa tìm được ở câu a).
Bài 3: Cho hệ phương trình: 
a) Giải hệ phương trình khi m = 3
b) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
c) Tìm giá trị của m thoả mãn: 2x2 – 7y = 1
d) Tìm các giá trị của m để biểu thức  nhận giá trị nguyên.
Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE
Chứng minh tứ giác CEHD nội tiếp .
Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
Chứng minh ED = BC.
Chứng minh DE là tiếp tuyến của đường tròn (O).
Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.
Bài 5: Cho hai số dương x,y thỏa x+y=1. Tìm GTNN của biểu thức 
ĐỀ SỐ 3
Bài 1: Tính giá trị biểu thức:  khi 
Bài 2: a) Vẽ đồ thị các hàm số y = - x + 2 và y = x + 2
b) Gọi toạ độ giao điểm của đồ thị các hàm số với các trục toạ độ là A và B, giao điểm của đồ thị 2 hàm số trên là E. Tính chu vi và diện tích
Bài 3: Cho hệ phương trình:  Với giá trị nào của m thì hệ phương trình
a) có nghiệm duy nhất. b) có vô số nghiệm. c) vô nghiệm.
Bài 4: Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.
1.Chứng minh AC + BD = CD. 2.Chứng minh (COD = 900.
3.Chứng minh AC. BD = . 4.Chứng minh OC // BM
5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
6.Chứng minh MN ( AB.
7.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Bài 5: Giải phương trình: 

ĐỀ SỐ 4
Bài 1: Rút gọn biểu thức:  ( với x > 0; x9)
Bài 2: Cho hàm số 
a) Tìm điều kiện của m để hàm số luôn luôn nghịch biến.
b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3
c) CMR: Đồ thị hàm số luôn luôn đi qua 1 điểm cố định với mọi giá trị của m
Bài 3: Trên cùng một dòng sông, một ca nô chạy xuôi dòng 108 km và ngược dòng 63km hết tất cả 7 h. Nếu ca nô xuôi dòng 81km và ngược dòng 84km thì hết 7 h. Tính vận tốc
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Thị Hồng Hạnh
Dung lượng: 1,55MB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)