KHO Đề Thi HSG Quốc Gia
Chia sẻ bởi Nguyễn Thị Ngóc Ái |
Ngày 13/10/2018 |
42
Chia sẻ tài liệu: KHO Đề Thi HSG Quốc Gia thuộc Đại số 9
Nội dung tài liệu:
Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh
Thừa Thiên Huế Khối 12 THPT - Năm học 2005-2006
Đề thi chính thức
Môn : TOÁN ( Vòng 1)
Thời gian làm bài : 150 phút, không kể thời gian phát đề
........... ...........................................................................................................................................
BÀI 1:
Gọi (C) là đồ thị hàm số :y = x3 – 2005x. M1 là điểm trên (C) có hoành độ x1=1.
Tiếp tuyến của (C) tại điểm M1 cắt (C) thêm một điểm M2 khác M1.
Tiếp tuyến của (C) tại điểm M2 cắt (C) thêm một điểm M3 khác M2,
Tiếp tuyến của (C) tại điểm Mn-1 cắt (C) thêm một điểm Mn khác Mn-1.(n =3,4,...)
Gọi (xn;yn) là tọa độ của điểm Mn . Tìm n để đẳng thức sau đúng :
2005xn + yn + 22007 = 0
BÀI 2:
Cho hình vuông EFGH .Gọi (T) là đường tròn qua các trung điểm các cạnh của
tam giác EFG. Nhận xét: Điểm H thoả mãn đồng thời hai tính chất sau :
a/ Các hình chiếu vuông góc của nó lần lượt lên các đường thẳng : EF ,FG, GE
nằm trên một đường thẳng d.
b/ Đường thẳng d tiếp xúc với đường tròn (T) .
Hãy tìm tập hợp tất cả các điểm N của mặt phẳng chứa hình vuông EFGH sao
cho N thoả mãn đồng thời hai tính chất a/ và b/ ở trên .
BÀI 3:
Gọi R là bán kính của đường tròn ngọai tiếp của tam giác ABC
Chứng minh rằng nếu tam giác ABC không có cạnh nào ngắn hơn bán kính R
và có diện tích nhỏ hơn hoặc bằng thì : sinA + sinB + sinC .
------------- Hết ---------------
Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh
Thừa Thiên Huế Khối 12 THPT - Năm học 2005-2006
Đề thi chính thức
Môn : TOÁN ( Vòng 2)
Thời gian làm bài : 150 phút, không kể thời gian phát đề
........... ...........................................................................................................................................
BÀI 1:
Với mỗi số thực a, kí hiệu [a] chỉ số nguyên k lớn nhất mà k a .
Giải phương trình : [lg+ + = +
BÀI 2:
Cho hình chóp tứ giác S.ABCD,có đáy ABCD là một hình bình hành .
Gọi G là trọng tâm của tam giác SAC. M là một điểm thay đổi trong miền hình
bình hành ABCD .Tia MG cắt mặt bên của hình chóp S.ABCD tại điểm N .
Đặt : Q =
1/ Tìm tất cả các vị trí của điểm M sao cho Q đạt giá trị nhỏ nhất .
2/ Tìm giá trị lớn nhất của Q .
BÀI 3:
Với mỗi số nguyên dương n ,hãy tìm tất cả các đa thức P(x) thoả mãn đồng thời
hai điều kiện sau :
a/ Các hệ số của P(x) khác nhau đôi một và đều thuộc tập {0;1;.....;n}.
b/ P(x) có n nghiệm thực phân biệt .
------------ Hết --------------
Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh
Thừa Thiên Huế Khối 12 THPT - Năm học 2005-2006
Đề thi chính thức
Môn : TOÁN ( Vòng 1)
ĐÁP ÁN - THANG ĐIỂM
Bài
Nội dung
Điểm
1
( 6đ)
+ Phương trình tiếp tuyến của (C) tại Mk (xk;yk): y - yk = y’(xk)(x- xk)
y = (3x2005)(x- xk)+ x2005xk
1,0
+ Xét phương trình : x3 – 2005x = (3x2005)(x- xk)+ x2005xk
(x- xk) (x2+ xk.x-2 x= 0 x= xk ; x = - 2xk
+ Vậy xk+1 = - 2xk
1,0
1,0
+ x1 =1 , x2 = -2 , x3 = 4 ........ , xn = (-2) n
Thừa Thiên Huế Khối 12 THPT - Năm học 2005-2006
Đề thi chính thức
Môn : TOÁN ( Vòng 1)
Thời gian làm bài : 150 phút, không kể thời gian phát đề
........... ...........................................................................................................................................
BÀI 1:
Gọi (C) là đồ thị hàm số :y = x3 – 2005x. M1 là điểm trên (C) có hoành độ x1=1.
Tiếp tuyến của (C) tại điểm M1 cắt (C) thêm một điểm M2 khác M1.
Tiếp tuyến của (C) tại điểm M2 cắt (C) thêm một điểm M3 khác M2,
Tiếp tuyến của (C) tại điểm Mn-1 cắt (C) thêm một điểm Mn khác Mn-1.(n =3,4,...)
Gọi (xn;yn) là tọa độ của điểm Mn . Tìm n để đẳng thức sau đúng :
2005xn + yn + 22007 = 0
BÀI 2:
Cho hình vuông EFGH .Gọi (T) là đường tròn qua các trung điểm các cạnh của
tam giác EFG. Nhận xét: Điểm H thoả mãn đồng thời hai tính chất sau :
a/ Các hình chiếu vuông góc của nó lần lượt lên các đường thẳng : EF ,FG, GE
nằm trên một đường thẳng d.
b/ Đường thẳng d tiếp xúc với đường tròn (T) .
Hãy tìm tập hợp tất cả các điểm N của mặt phẳng chứa hình vuông EFGH sao
cho N thoả mãn đồng thời hai tính chất a/ và b/ ở trên .
BÀI 3:
Gọi R là bán kính của đường tròn ngọai tiếp của tam giác ABC
Chứng minh rằng nếu tam giác ABC không có cạnh nào ngắn hơn bán kính R
và có diện tích nhỏ hơn hoặc bằng thì : sinA + sinB + sinC .
------------- Hết ---------------
Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh
Thừa Thiên Huế Khối 12 THPT - Năm học 2005-2006
Đề thi chính thức
Môn : TOÁN ( Vòng 2)
Thời gian làm bài : 150 phút, không kể thời gian phát đề
........... ...........................................................................................................................................
BÀI 1:
Với mỗi số thực a, kí hiệu [a] chỉ số nguyên k lớn nhất mà k a .
Giải phương trình : [lg+ + = +
BÀI 2:
Cho hình chóp tứ giác S.ABCD,có đáy ABCD là một hình bình hành .
Gọi G là trọng tâm của tam giác SAC. M là một điểm thay đổi trong miền hình
bình hành ABCD .Tia MG cắt mặt bên của hình chóp S.ABCD tại điểm N .
Đặt : Q =
1/ Tìm tất cả các vị trí của điểm M sao cho Q đạt giá trị nhỏ nhất .
2/ Tìm giá trị lớn nhất của Q .
BÀI 3:
Với mỗi số nguyên dương n ,hãy tìm tất cả các đa thức P(x) thoả mãn đồng thời
hai điều kiện sau :
a/ Các hệ số của P(x) khác nhau đôi một và đều thuộc tập {0;1;.....;n}.
b/ P(x) có n nghiệm thực phân biệt .
------------ Hết --------------
Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh
Thừa Thiên Huế Khối 12 THPT - Năm học 2005-2006
Đề thi chính thức
Môn : TOÁN ( Vòng 1)
ĐÁP ÁN - THANG ĐIỂM
Bài
Nội dung
Điểm
1
( 6đ)
+ Phương trình tiếp tuyến của (C) tại Mk (xk;yk): y - yk = y’(xk)(x- xk)
y = (3x2005)(x- xk)+ x2005xk
1,0
+ Xét phương trình : x3 – 2005x = (3x2005)(x- xk)+ x2005xk
(x- xk) (x2+ xk.x-2 x= 0 x= xk ; x = - 2xk
+ Vậy xk+1 = - 2xk
1,0
1,0
+ x1 =1 , x2 = -2 , x3 = 4 ........ , xn = (-2) n
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thị Ngóc Ái
Dung lượng: 286,13KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)