Giải toán bằng cách lập pt
Chia sẻ bởi Đinh Võ Bảo Châu Bảo Châu |
Ngày 13/10/2018 |
38
Chia sẻ tài liệu: Giải toán bằng cách lập pt thuộc Đại số 9
Nội dung tài liệu:
GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH
Nguồn: http://diendankienthuc.net
Bài 1: Để đi đoạn đường từ A đến B, một xe máy đã đi hết 3h20 phút, còn một ôtô chỉ đi hết 2h30phút. Tính chiều dài quãng đường AB biết rằng vận tốc của ôtô lớn hơn vận tốc xe máy 20km/h. Bài 2: Có hai vòi nước, vòi 1 chảy đầy bể trong 1,5 giờ, vòi 2 chảy đầy bể trong 2 giờ. Người ta đã cho vòi 1 chảy trong một thời gian, rồi khóa lại và cho vòi 2 chảy tiếp, tổng cộng trong 1,8 giờ thì đầy bể. Hỏi mỗi vòi đã chảy trong bao lâu? Bài 3: Tổng các chữ số hàng chục và hai lần chữ số hàng đơn vị của một số có hai chữ số bằng 18. Nếu đổi chỗ hai chữ số cho nhau thì được số mới lớn hơn số ban đầu là 54. Tìm số ban đầu. Bài 4: Một đám đất hình chữ nhật có chu vi 124m. Nếu tăng chiều dài 5m và chiều rộng 3m thì diện tích tăng thêm 225 m2. Tính kích thước của hình chữ nhật đó. Bài 5: Hai người ở hai địa điểm A và B cách nhau 3,6 km, khởi hành cùng một lúc ngược chiều nhau và gặp nhau ở một điểm cách A là 2km. Nếu cả hai cùng giữ nguyên vận tốc nhưng người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người. Bài 6: Hai đội công nhân cùng làm một đoạn đường trong 24 ngày thì xong. Mỗi ngày phần việc của đội A làm được nhiều gấp rưỡi đội B. Hỏi nếu làm một mình thì mỗi đội làm xong đoạn đường đó trong bao lâu? Bài 7: Một chiếc thuyền khởi hành từ bến sông A. Sau đó 5h20’ một chiếc cano chạy từ bến sông A đuổi theo và gặp chiếc thuyền tại một điểm cách bến A 20km. Hỏi vận tốc của thuyền, biết rằng cano chạy nhanh hơn thuyền 12km. Bài 8: Một người đi xe đạp đi từ địa điểm A đến địa điểm B cách nhau 30km. Khi từ B trở về A, người đó chọn con đường khác dễ đi hơn nhưng dài hơn con đường cũ 6km. Vì thế, khi đi về với vận tốc lớn hơn vận tốc lúc đi là 3km/h nên thời gian về ít hơn thời gian đi 20 phút. Tính vận tốc lúc đi. Bài 9: Một xí nghiệp có kế hoạch sản xuất 180 tấn dụng cụ trong một thời gian đã định. Nhưng nhờ tinh thần thi đua, nên mỗi ngày xí nghiệp sản xuất nhiều hơn mức dự kiến 1 tấn; chẳng những rút ngắn thời gian dự định 1 ngày mà còn sản xuất thêm 10 tấn ngoài kế hoạch. Hỏi thời gian dự kiến bao nhiêu ngày ? Mỗi ngày dự kiến làm ra bao nhiêu tấn dụng cụ ? Bài 10: Một hội đồng thi có 390 thí sinh phân đều các phòng. Nếu xếp mỗi phòng thi thêm 4 thí sinh thì số phòng thi sẽ giảm đi 2 phòng. Hỏi lúc đầu mỗi phòng thi dự định xếp bao nhiêu thí sinh ? Bài 11: Khi nhân hai số tự nhiên hơn kém 10 đơn vị, một học sinh đã làm sai, nên trong kết quả số hàng chục thiếu đi 3. Biết rằng nếu đem kết quả sai đó chia cho số nhỏ hơn trong hai số ban đầu sẽ được thương là 25 và số dư là 4. Tìm hai số đó. Bài 12: Tìm 5 số nguyên dương liên tiếp biết rằng tổng bình phương của hai số lớn nhất bằng tổng bình phương của 3 số còn lại. Bài 13: Cho hai số, số này gấp ba lần số kia. Nếu ta thêm 1 vào mỗi số thì tổng nghịch đảo của chúng bằng ¾ . Tìm hai số đó? Bài 14: Tìm hai số biết rằng tổng của chúng là 18. Nếu tăng mỗi số thêm 2 đơn vị thì tích của chúng sẽ tăng lên gấp 1,5 lần. Bài 15: Dân số của một thành phố trong 2 năm tăng từ 20000 lên 22050 người. Tính xem hàng năm trung bình dân số tăng bao nhiêu phần trăm? Bài 16: Một hình chữ nhật có chiều rộng ngắn hơn chiều dài 1cm. Nếu tăng thêm chiều dài ¼ của nó thì diện tích hình chữ nhật đó tăng thêm 3cm2. Tính diện tích hình chữ nhật ban đầu? Bài 17: Một hình chữ nhật có chu vi là 180m. Nếu bớt mỗi chiều đi 5 mét thì diện tích chỉ còn 1276m2. Tìm độ dài mỗi chiều? Bài 18: Cho hai nửa đường thẳng vuông góc Ox, Oy. Trên Ox, Oy lần lượt có hai điểm A và B di chuyển với vận tốc đều. Sau 4 phút điểm A cách điểm B 50cm. Vận tốc điểm A hơn điểm B là 2,5cm/phút
Nguồn: http://diendankienthuc.net
Bài 1: Để đi đoạn đường từ A đến B, một xe máy đã đi hết 3h20 phút, còn một ôtô chỉ đi hết 2h30phút. Tính chiều dài quãng đường AB biết rằng vận tốc của ôtô lớn hơn vận tốc xe máy 20km/h. Bài 2: Có hai vòi nước, vòi 1 chảy đầy bể trong 1,5 giờ, vòi 2 chảy đầy bể trong 2 giờ. Người ta đã cho vòi 1 chảy trong một thời gian, rồi khóa lại và cho vòi 2 chảy tiếp, tổng cộng trong 1,8 giờ thì đầy bể. Hỏi mỗi vòi đã chảy trong bao lâu? Bài 3: Tổng các chữ số hàng chục và hai lần chữ số hàng đơn vị của một số có hai chữ số bằng 18. Nếu đổi chỗ hai chữ số cho nhau thì được số mới lớn hơn số ban đầu là 54. Tìm số ban đầu. Bài 4: Một đám đất hình chữ nhật có chu vi 124m. Nếu tăng chiều dài 5m và chiều rộng 3m thì diện tích tăng thêm 225 m2. Tính kích thước của hình chữ nhật đó. Bài 5: Hai người ở hai địa điểm A và B cách nhau 3,6 km, khởi hành cùng một lúc ngược chiều nhau và gặp nhau ở một điểm cách A là 2km. Nếu cả hai cùng giữ nguyên vận tốc nhưng người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người. Bài 6: Hai đội công nhân cùng làm một đoạn đường trong 24 ngày thì xong. Mỗi ngày phần việc của đội A làm được nhiều gấp rưỡi đội B. Hỏi nếu làm một mình thì mỗi đội làm xong đoạn đường đó trong bao lâu? Bài 7: Một chiếc thuyền khởi hành từ bến sông A. Sau đó 5h20’ một chiếc cano chạy từ bến sông A đuổi theo và gặp chiếc thuyền tại một điểm cách bến A 20km. Hỏi vận tốc của thuyền, biết rằng cano chạy nhanh hơn thuyền 12km. Bài 8: Một người đi xe đạp đi từ địa điểm A đến địa điểm B cách nhau 30km. Khi từ B trở về A, người đó chọn con đường khác dễ đi hơn nhưng dài hơn con đường cũ 6km. Vì thế, khi đi về với vận tốc lớn hơn vận tốc lúc đi là 3km/h nên thời gian về ít hơn thời gian đi 20 phút. Tính vận tốc lúc đi. Bài 9: Một xí nghiệp có kế hoạch sản xuất 180 tấn dụng cụ trong một thời gian đã định. Nhưng nhờ tinh thần thi đua, nên mỗi ngày xí nghiệp sản xuất nhiều hơn mức dự kiến 1 tấn; chẳng những rút ngắn thời gian dự định 1 ngày mà còn sản xuất thêm 10 tấn ngoài kế hoạch. Hỏi thời gian dự kiến bao nhiêu ngày ? Mỗi ngày dự kiến làm ra bao nhiêu tấn dụng cụ ? Bài 10: Một hội đồng thi có 390 thí sinh phân đều các phòng. Nếu xếp mỗi phòng thi thêm 4 thí sinh thì số phòng thi sẽ giảm đi 2 phòng. Hỏi lúc đầu mỗi phòng thi dự định xếp bao nhiêu thí sinh ? Bài 11: Khi nhân hai số tự nhiên hơn kém 10 đơn vị, một học sinh đã làm sai, nên trong kết quả số hàng chục thiếu đi 3. Biết rằng nếu đem kết quả sai đó chia cho số nhỏ hơn trong hai số ban đầu sẽ được thương là 25 và số dư là 4. Tìm hai số đó. Bài 12: Tìm 5 số nguyên dương liên tiếp biết rằng tổng bình phương của hai số lớn nhất bằng tổng bình phương của 3 số còn lại. Bài 13: Cho hai số, số này gấp ba lần số kia. Nếu ta thêm 1 vào mỗi số thì tổng nghịch đảo của chúng bằng ¾ . Tìm hai số đó? Bài 14: Tìm hai số biết rằng tổng của chúng là 18. Nếu tăng mỗi số thêm 2 đơn vị thì tích của chúng sẽ tăng lên gấp 1,5 lần. Bài 15: Dân số của một thành phố trong 2 năm tăng từ 20000 lên 22050 người. Tính xem hàng năm trung bình dân số tăng bao nhiêu phần trăm? Bài 16: Một hình chữ nhật có chiều rộng ngắn hơn chiều dài 1cm. Nếu tăng thêm chiều dài ¼ của nó thì diện tích hình chữ nhật đó tăng thêm 3cm2. Tính diện tích hình chữ nhật ban đầu? Bài 17: Một hình chữ nhật có chu vi là 180m. Nếu bớt mỗi chiều đi 5 mét thì diện tích chỉ còn 1276m2. Tìm độ dài mỗi chiều? Bài 18: Cho hai nửa đường thẳng vuông góc Ox, Oy. Trên Ox, Oy lần lượt có hai điểm A và B di chuyển với vận tốc đều. Sau 4 phút điểm A cách điểm B 50cm. Vận tốc điểm A hơn điểm B là 2,5cm/phút
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đinh Võ Bảo Châu Bảo Châu
Dung lượng: 37,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)