Đf thi vào 10
Chia sẻ bởi Đặng Văn Hiền |
Ngày 13/10/2018 |
40
Chia sẻ tài liệu: Đf thi vào 10 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
BÌNH ĐỊNH NĂM HỌC 2009 - 2010
Đề chính thức
Môn thi: Toán
Ngày thi: 02/ 07/ 2009
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1: (2,0 điểm)
Giải các phương trình sau:
2(x + 1) = 4 – x
x2 – 3x + 0 = 0
Bài 2: (2,0 điểm)
Cho hàm số y = ax + b. tìm a, b biết đồ thị hàm số đã cho đi qua hai điểm A(-2; 5) và B(1; -4).
Cho hàm số y = (2m – 1)x + m + 2
Tìm điều kiện của m để hàm số luôn nghịch biến.
Tìm giá trị m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng
Bài 3: (2,0 điểm)
Một người đi xe máy khởi hành từ Hoài Ân đi Quy Nhơn. Sau đó 75 phút, trên cùng tuyến đường đó một ôtô khởi hành từ Quy Nhơn đi Hoài Ân với vận tốc lớn hơn vận tốc của xe máy là 20 km/giờ. Hai xe gặp nhau tại Phù Cát. Tính vận tốc của mỗi xe, giả thiết rằng Quy Nhơn cách Hoài Ân 100 km và Quy Nhơn cách Phù Cát 30 km.
Bài 4: (3,0 điểm)
Cho tam giác vuông ABC nội tiếp trong đường tròn tâm O đường kính AB. Kéo dài AC (về phía C) đoạn CD sao cho CD = AC.
1/ Chứng minh tam giác ABD cân.
2/ Đường thẳng vuông góc với AC tại A cắt đường tròn (O) tại E. Kéo dài AE (về phía E) đoạn EF sao cho EF = AE. Chứng minh rằng ba điểm D, B, F cùng nằm trên một đường thẳng.
2/ Chứng minh rằng đường tròn đi qua ba điểm A, D, F tiếp xúc với đường tròn (O).
Bài 5: (1,0 điểm)
Với mỗi số k nguyên dương, đặt Sk = ( + 1)k + ( - 1)k
Chứng minh rằng: Sm+n + Sm- n = Sm .Sn với mọi m, n là số nguyên dương và m > n.
SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
BÌNH ĐỊNH NĂM HỌC 2009 - 2010
Đề chính thức
Lời giải vắn tắt môn thi: Toán
Ngày thi: 02/ 07/ 2009
Bài 1: (2,0 điểm)
Giải PT: 2(x + 1) = 4 – x 2x + 2 = 4 - x 2x + x = 4 - 2 3x = 2 x =
2) x2 – 3x + 2 = 0. (a = 1 ; b = - 3 ; c = 2)
Ta có a + b + c = 1 - 3 + 2 = 0 .Suy ra x1= 1 và x2 = = 2
Bài 2: (2,0 điểm)
1.Ta có a, b là nghiệm của hệ phương trình
Vậy a = - 3 vaø b = - 1
2. Cho hàm số y = (2m – 1)x + m + 2
Để hàm số nghịch biến thì 2m – 1 < 0 m < .
Để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng . Hay đồ thị hàm số đi qua điểm có toạ đô (;0). Ta có pt 0 = (2m – 1).(- ) + m + 2 m = 8
Bài 3: (2,0 điểm)
Quãng đường từ Hoài Ân đi Phù Cát dài : 100 - 30 = 70 (km)
Gọi x (km/h) là vận tốc xe máy .ĐK : x > 0.
Vận tốc ô tô là x + 20 (km/h)
Thời gian xe máy đi đến Phù Cát : (h)
Thời gian ô tô đi đến Phù Cát : (h)
Vì xe máy đi trước ô tô 75 phút = (h) nên ta có phương trình : - =
Giải phương trình trên ta được x1 = - 60 (loại) ; x2 = 40 (nhaän).
Vậy vận tốc xe máy là 40(km/h), vận tốc của ô tô là 40 + 20 = 60(km/h)
Bài 4 : a) Chứng minh ABD cân
Xét ABD có BC
BÌNH ĐỊNH NĂM HỌC 2009 - 2010
Đề chính thức
Môn thi: Toán
Ngày thi: 02/ 07/ 2009
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1: (2,0 điểm)
Giải các phương trình sau:
2(x + 1) = 4 – x
x2 – 3x + 0 = 0
Bài 2: (2,0 điểm)
Cho hàm số y = ax + b. tìm a, b biết đồ thị hàm số đã cho đi qua hai điểm A(-2; 5) và B(1; -4).
Cho hàm số y = (2m – 1)x + m + 2
Tìm điều kiện của m để hàm số luôn nghịch biến.
Tìm giá trị m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng
Bài 3: (2,0 điểm)
Một người đi xe máy khởi hành từ Hoài Ân đi Quy Nhơn. Sau đó 75 phút, trên cùng tuyến đường đó một ôtô khởi hành từ Quy Nhơn đi Hoài Ân với vận tốc lớn hơn vận tốc của xe máy là 20 km/giờ. Hai xe gặp nhau tại Phù Cát. Tính vận tốc của mỗi xe, giả thiết rằng Quy Nhơn cách Hoài Ân 100 km và Quy Nhơn cách Phù Cát 30 km.
Bài 4: (3,0 điểm)
Cho tam giác vuông ABC nội tiếp trong đường tròn tâm O đường kính AB. Kéo dài AC (về phía C) đoạn CD sao cho CD = AC.
1/ Chứng minh tam giác ABD cân.
2/ Đường thẳng vuông góc với AC tại A cắt đường tròn (O) tại E. Kéo dài AE (về phía E) đoạn EF sao cho EF = AE. Chứng minh rằng ba điểm D, B, F cùng nằm trên một đường thẳng.
2/ Chứng minh rằng đường tròn đi qua ba điểm A, D, F tiếp xúc với đường tròn (O).
Bài 5: (1,0 điểm)
Với mỗi số k nguyên dương, đặt Sk = ( + 1)k + ( - 1)k
Chứng minh rằng: Sm+n + Sm- n = Sm .Sn với mọi m, n là số nguyên dương và m > n.
SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
BÌNH ĐỊNH NĂM HỌC 2009 - 2010
Đề chính thức
Lời giải vắn tắt môn thi: Toán
Ngày thi: 02/ 07/ 2009
Bài 1: (2,0 điểm)
Giải PT: 2(x + 1) = 4 – x 2x + 2 = 4 - x 2x + x = 4 - 2 3x = 2 x =
2) x2 – 3x + 2 = 0. (a = 1 ; b = - 3 ; c = 2)
Ta có a + b + c = 1 - 3 + 2 = 0 .Suy ra x1= 1 và x2 = = 2
Bài 2: (2,0 điểm)
1.Ta có a, b là nghiệm của hệ phương trình
Vậy a = - 3 vaø b = - 1
2. Cho hàm số y = (2m – 1)x + m + 2
Để hàm số nghịch biến thì 2m – 1 < 0 m < .
Để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng . Hay đồ thị hàm số đi qua điểm có toạ đô (;0). Ta có pt 0 = (2m – 1).(- ) + m + 2 m = 8
Bài 3: (2,0 điểm)
Quãng đường từ Hoài Ân đi Phù Cát dài : 100 - 30 = 70 (km)
Gọi x (km/h) là vận tốc xe máy .ĐK : x > 0.
Vận tốc ô tô là x + 20 (km/h)
Thời gian xe máy đi đến Phù Cát : (h)
Thời gian ô tô đi đến Phù Cát : (h)
Vì xe máy đi trước ô tô 75 phút = (h) nên ta có phương trình : - =
Giải phương trình trên ta được x1 = - 60 (loại) ; x2 = 40 (nhaän).
Vậy vận tốc xe máy là 40(km/h), vận tốc của ô tô là 40 + 20 = 60(km/h)
Bài 4 : a) Chứng minh ABD cân
Xét ABD có BC
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đặng Văn Hiền
Dung lượng: 163,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)