Dethivaolop10tu1999den2009
Chia sẻ bởi Phạm Tuấn Khiêm |
Ngày 13/10/2018 |
40
Chia sẻ tài liệu: dethivaolop10tu1999den2009 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠOHẢI PHÒNG ĐỀ THI TỐT NGHIỆP PHỔ THÔNG THCS
Môn thi : Toán - Năm học 1999 - 2000
Thời gian làm bài : 120 phút (không kể thời gian giao đề)
A. Lý thuyết : (2 điểm) Học sinh chọn 1 trong 2 câu sau :
Câu 1 :
Hãy viết định nghĩa căn bậc hai số học của một số a ≥ 0. Tính:
b) Hãy viết định nghĩa về đường thẳng song song với mặt phẳng.
Câu 2 :
a) Hãy viết dạng tổng quát hệ hai phưng trình bậc nhất hai ẩn số.
b) Chứng minh : “Mọi góc nội tiếp chắn nửa đường tròn đều là góc vuông”.
B. Bài toán : (8 điểm) Bắt buộc cho mọi học sinh.
Bài 1 : (2 điểm).
Cho :
M =
Tính M + N và M x N.
Tìm tập xác định của hàm số :
y =
c) Cho đường thẳng (d) có phưng trình . Hãy tìm tọa độ các giao điểm của đường thẳng (d) với các trục tọa độ.
Bài 2 : (2 điểm).
Trong một phòng có 288 ghế được xếp thành các dãy, mỗi dãy đều có số ghế như nhau. Nếu ta bớt đi 2 dãy và mỗi dãy còn lại thêm 2 ghế thì vừa đủ cho 288 người họp (mỗi người ngồi một ghế). Hỏi trong phòng đó có mấy dãy ghế và mỗi dãy có bao nhiêu ghế ?
Bài 3 : (4 điểm).
Cho nửa đường tròn đường kính AB, Kẻ tiếp tuyến Bx với nửa đường tròn. C là điểm trên nửa đường tròn sao cho cung AC bằng cung CB. Trên cung CB lấy điểm D tùy ý (D khác C và B). Các tia AC, AD cắt Bx lần lượt tại E và F.
a) Chứng minh ΔABE vuông cân.
b) Chứng minh ΔABF ~ ΔBDF.
c) Chứng minh tứ giác CEFD nội tiếp.
d) Cho điểm C di động trên nửa đường tròn (C khác A và B) và D di động trên cung CB (D khác C và B). Chứng minh:
AC x AE = AD x AF và có giá trị không đổi.
KỲ THI TUYỂN SINH TRƯỜNG THPT NGUYỄN TRÃI, HẢI DƯƠNG NĂM HỌC 2002 - 2003
Môn Toán - Dành cho các lớp chuyên tự nhiên
Thời gian làm bài 150 phút
Bài I (3,0 điểm)
Cho biểu thức :
1) Rút gọn biểu thức A.
2) Tìm các số nguyên x để biểu thức A là một số nguyên.
Bài II (3,0 điểm)
1) Gọi x1 và x2 là hai nghiệm của phương trình :
x2 - (2m - 3)x + 1 - m = 0
Tìm giá trị của m để x12 + x22 + 3x1.x2. ( x1 + x2)đạt giá trị lớn nhất.
2) Cho a, b là các số hữu tỉ thỏa mãn: a2003 + b2003 = 2 a2003 . b2003
Chứng minh rằng phương trình : x2 + 2x + ab = 0 có hai nghiệm hữu tỉ.
Bài III (3,0 điểm)
1) Cho tam giác cân ABC, góc A = 180o. Tính tỉ số BC/AB.
2) Cho hình quạt tròn giới hạn bởi cung tròn và hai bán kính OA, OB vuông góc với nhau. Gọi I là trung điểm của OB, phân giác góc AIO cắt OA tại D, qua D kẻ đường thẳng song song với OB cắt cung tròn ở C. Tính góc ACD .
Bài IV (1,0 điểm)
Chứng minh bất đẳng thức :
với a, b, c là các số thực bất kì.
KÌ THI HỌC SINH GIỎI CẤP THÀNH PHỐ (THCS) TP HỒ CHÍ MINH
Năm học 2002 - 2003
* Môn thi : Toán * Thời gian : 150 phút
Bài 1 : (4 điểm)
Cho phương trình : (2m - 1) x2 - 2mx + 1 = 0.
a) Định m để phương trình trên có nghiệm thuộc khoảng (-1 ; 0)
b) Định m để phương trình có hai nghiệm x1, x2 thỏa |x12 - x22| = 1.
Bài 2 : (5 điểm)
Giải các phương trình và hệ phương trình sau đây :
Bài 3 : (3 điểm)
a) Cho a > c, b > c, c > 0. Chứng minh :
b) Cho x ≥ 1 , y ≥ 1. Chứng minh :
Bài 4 : (3 điểm)
Từ điểm A ở ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên tia đối của tia BC lấy điểm D. Gọi E là giao điểm của DO và AC. Qua E vẽ tiếp tuyến thứ
Môn thi : Toán - Năm học 1999 - 2000
Thời gian làm bài : 120 phút (không kể thời gian giao đề)
A. Lý thuyết : (2 điểm) Học sinh chọn 1 trong 2 câu sau :
Câu 1 :
Hãy viết định nghĩa căn bậc hai số học của một số a ≥ 0. Tính:
b) Hãy viết định nghĩa về đường thẳng song song với mặt phẳng.
Câu 2 :
a) Hãy viết dạng tổng quát hệ hai phưng trình bậc nhất hai ẩn số.
b) Chứng minh : “Mọi góc nội tiếp chắn nửa đường tròn đều là góc vuông”.
B. Bài toán : (8 điểm) Bắt buộc cho mọi học sinh.
Bài 1 : (2 điểm).
Cho :
M =
Tính M + N và M x N.
Tìm tập xác định của hàm số :
y =
c) Cho đường thẳng (d) có phưng trình . Hãy tìm tọa độ các giao điểm của đường thẳng (d) với các trục tọa độ.
Bài 2 : (2 điểm).
Trong một phòng có 288 ghế được xếp thành các dãy, mỗi dãy đều có số ghế như nhau. Nếu ta bớt đi 2 dãy và mỗi dãy còn lại thêm 2 ghế thì vừa đủ cho 288 người họp (mỗi người ngồi một ghế). Hỏi trong phòng đó có mấy dãy ghế và mỗi dãy có bao nhiêu ghế ?
Bài 3 : (4 điểm).
Cho nửa đường tròn đường kính AB, Kẻ tiếp tuyến Bx với nửa đường tròn. C là điểm trên nửa đường tròn sao cho cung AC bằng cung CB. Trên cung CB lấy điểm D tùy ý (D khác C và B). Các tia AC, AD cắt Bx lần lượt tại E và F.
a) Chứng minh ΔABE vuông cân.
b) Chứng minh ΔABF ~ ΔBDF.
c) Chứng minh tứ giác CEFD nội tiếp.
d) Cho điểm C di động trên nửa đường tròn (C khác A và B) và D di động trên cung CB (D khác C và B). Chứng minh:
AC x AE = AD x AF và có giá trị không đổi.
KỲ THI TUYỂN SINH TRƯỜNG THPT NGUYỄN TRÃI, HẢI DƯƠNG NĂM HỌC 2002 - 2003
Môn Toán - Dành cho các lớp chuyên tự nhiên
Thời gian làm bài 150 phút
Bài I (3,0 điểm)
Cho biểu thức :
1) Rút gọn biểu thức A.
2) Tìm các số nguyên x để biểu thức A là một số nguyên.
Bài II (3,0 điểm)
1) Gọi x1 và x2 là hai nghiệm của phương trình :
x2 - (2m - 3)x + 1 - m = 0
Tìm giá trị của m để x12 + x22 + 3x1.x2. ( x1 + x2)đạt giá trị lớn nhất.
2) Cho a, b là các số hữu tỉ thỏa mãn: a2003 + b2003 = 2 a2003 . b2003
Chứng minh rằng phương trình : x2 + 2x + ab = 0 có hai nghiệm hữu tỉ.
Bài III (3,0 điểm)
1) Cho tam giác cân ABC, góc A = 180o. Tính tỉ số BC/AB.
2) Cho hình quạt tròn giới hạn bởi cung tròn và hai bán kính OA, OB vuông góc với nhau. Gọi I là trung điểm của OB, phân giác góc AIO cắt OA tại D, qua D kẻ đường thẳng song song với OB cắt cung tròn ở C. Tính góc ACD .
Bài IV (1,0 điểm)
Chứng minh bất đẳng thức :
với a, b, c là các số thực bất kì.
KÌ THI HỌC SINH GIỎI CẤP THÀNH PHỐ (THCS) TP HỒ CHÍ MINH
Năm học 2002 - 2003
* Môn thi : Toán * Thời gian : 150 phút
Bài 1 : (4 điểm)
Cho phương trình : (2m - 1) x2 - 2mx + 1 = 0.
a) Định m để phương trình trên có nghiệm thuộc khoảng (-1 ; 0)
b) Định m để phương trình có hai nghiệm x1, x2 thỏa |x12 - x22| = 1.
Bài 2 : (5 điểm)
Giải các phương trình và hệ phương trình sau đây :
Bài 3 : (3 điểm)
a) Cho a > c, b > c, c > 0. Chứng minh :
b) Cho x ≥ 1 , y ≥ 1. Chứng minh :
Bài 4 : (3 điểm)
Từ điểm A ở ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên tia đối của tia BC lấy điểm D. Gọi E là giao điểm của DO và AC. Qua E vẽ tiếp tuyến thứ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Tuấn Khiêm
Dung lượng: 199,05KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)