De va dap an HK I Toan 9 Ben Tre20102011.@
Chia sẻ bởi Nguyễn Thanh Vinh |
Ngày 13/10/2018 |
37
Chia sẻ tài liệu: De va dap an HK I Toan 9 Ben Tre20102011.@ thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA HỌC KỲ I NĂM HỌC 2010-2011
BẾN TRE Môn Toán - Lớp 9
( Thời gian làm bài 120 phút, không kể thời gian giao đề )
Câu 1 (2,5 điểm)
Rút gọn các biểu thức sau:
a) .
b) .
c) .
Câu 2 (3,5 điểm)
Cho các hàm số. Lần lượt có đồ thị là các đường thẳng và .
Vẽ và trên cùng một hệ trục tọa độ Oxy.
Lập phương trình của đường thẳng biết rằng đi qua điểm M(2;-1) và song song với đường thẳng .
Tìm điểm A thuộc đường thẳng có hoành độ và tung độ bằng nhau.
Câu 3 (4,0 điểm)
Cho tam giác ABC vuông tại A, có cm và cm.
a) Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
b) Xác định tâm I và tính bán kính R của đường tròn đường kính HC.
c) Tính khoảng cách từ tâm I của đường tròn đường kính HC đến một dây cung của đường
tròn này, biết rằng dây cung này có độ dài bằng cm.
------------ Hết -----------
HƯỚNG DẪN CHẤM CỦA ĐỀ KIỂM TRA HỌC KỲ 1 NĂM HỌC 2010 -2011
MÔN TOÁN - KHỐI 9
Câu
Đáp án
Điểm
Câu 1
2.5 đ
Câu 1:
a)
0.5
b)
0.5
0.5
c)
0.5
0.5
Câu 2
3.5 đ
Câu 2: a) Vẽ và .trên cùng một hệ trục tọa độ Oxy.
Đường thẳng đi qua hai điểm (0;2) và (2;0)
0.5
Đường thẳng đi qua hai điểm (0;4) và (-4;0)
0.5
1.0
Lập phương trình của đường thẳng biết rằng đi qua điểm M(2;-1) và song song với đường thẳng .
Vì song song với suy ra có hệ số góc là -1, do đó có dạng: .
0.5
Vậy: .
0.5
Tìm điểm A thuộc đường thẳng có hoành độ và tung độ bằng nhau.
Vì có hoành độ và tung độ bằng nhau nên
Vậy:
0.5
Câu 3
4.0 đ
Câu 3: Cho tam giác ABC vuông tại A, có cm và cm.
a) Tính độ dài đường cao AH, trung tuyến AM của tam giác ABC.
0.5
Vì vuông tại A và có đường cao do đó ta có:
0.5
0.5
Vì vuông tại A và là trung tuyến do đó ta có:
0.25
Mà
Vậy:
0.5
b) Xác định tâm I và tính bán kính R của đường tròn dường tròn đường kính HC.
Ta có:
0.25
Trong vuông tại A ta có:
Vậy: .
0.5
c) Tính khoảng cách từ tâm I của đường tròn đường kính HC đến một dây cung của đường tròn có độ dài .
Gọi PQ là dây cung đã cho và N là trung điểm của PQ ta có: IN là khoảng cách từ I đến PQ.
0.5
Ta có:
Vậy khoảng cách từ I đến PQ bằng
0.5
BẾN TRE Môn Toán - Lớp 9
( Thời gian làm bài 120 phút, không kể thời gian giao đề )
Câu 1 (2,5 điểm)
Rút gọn các biểu thức sau:
a) .
b) .
c) .
Câu 2 (3,5 điểm)
Cho các hàm số. Lần lượt có đồ thị là các đường thẳng và .
Vẽ và trên cùng một hệ trục tọa độ Oxy.
Lập phương trình của đường thẳng biết rằng đi qua điểm M(2;-1) và song song với đường thẳng .
Tìm điểm A thuộc đường thẳng có hoành độ và tung độ bằng nhau.
Câu 3 (4,0 điểm)
Cho tam giác ABC vuông tại A, có cm và cm.
a) Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
b) Xác định tâm I và tính bán kính R của đường tròn đường kính HC.
c) Tính khoảng cách từ tâm I của đường tròn đường kính HC đến một dây cung của đường
tròn này, biết rằng dây cung này có độ dài bằng cm.
------------ Hết -----------
HƯỚNG DẪN CHẤM CỦA ĐỀ KIỂM TRA HỌC KỲ 1 NĂM HỌC 2010 -2011
MÔN TOÁN - KHỐI 9
Câu
Đáp án
Điểm
Câu 1
2.5 đ
Câu 1:
a)
0.5
b)
0.5
0.5
c)
0.5
0.5
Câu 2
3.5 đ
Câu 2: a) Vẽ và .trên cùng một hệ trục tọa độ Oxy.
Đường thẳng đi qua hai điểm (0;2) và (2;0)
0.5
Đường thẳng đi qua hai điểm (0;4) và (-4;0)
0.5
1.0
Lập phương trình của đường thẳng biết rằng đi qua điểm M(2;-1) và song song với đường thẳng .
Vì song song với suy ra có hệ số góc là -1, do đó có dạng: .
0.5
Vậy: .
0.5
Tìm điểm A thuộc đường thẳng có hoành độ và tung độ bằng nhau.
Vì có hoành độ và tung độ bằng nhau nên
Vậy:
0.5
Câu 3
4.0 đ
Câu 3: Cho tam giác ABC vuông tại A, có cm và cm.
a) Tính độ dài đường cao AH, trung tuyến AM của tam giác ABC.
0.5
Vì vuông tại A và có đường cao do đó ta có:
0.5
0.5
Vì vuông tại A và là trung tuyến do đó ta có:
0.25
Mà
Vậy:
0.5
b) Xác định tâm I và tính bán kính R của đường tròn dường tròn đường kính HC.
Ta có:
0.25
Trong vuông tại A ta có:
Vậy: .
0.5
c) Tính khoảng cách từ tâm I của đường tròn đường kính HC đến một dây cung của đường tròn có độ dài .
Gọi PQ là dây cung đã cho và N là trung điểm của PQ ta có: IN là khoảng cách từ I đến PQ.
0.5
Ta có:
Vậy khoảng cách từ I đến PQ bằng
0.5
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thanh Vinh
Dung lượng: 166,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)