DE TUYEN VAO LOP 10 TOAN 02

Chia sẻ bởi Võ Thạch Sơn | Ngày 13/10/2018 | 35

Chia sẻ tài liệu: DE TUYEN VAO LOP 10 TOAN 02 thuộc Đại số 9

Nội dung tài liệu:


Đề số 5
(Đề thi năm học 2000 – 2001)

Câu I
Cho phương trình:
x2 – 2(m + 1)x + 2m – 15 = 0.
1) Giải phương trình với m = 0.
2) Gọi hai nghiệm của phương trình là x1 và x2. Tìm các giá trị của m thoả mãn 5x1 + x2 = 4.
Câu II
Cho hàm số y = (m – 1)x + m + 3.
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1.
2) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1 ; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tìm giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện
tích bằng 1 (đvdt).
Câu III
Cho tam giác ABC nội tiếp đường tròn tâm O, đường phân giác trong của góc A cắt cạnh BC tại D và cắt đường tròn ngoại tiếp tại I.
1) Chứng minh OI vuông góc với BC.
2) Chứng minh BI2 = AI.DI.
3) Gọi H là hình chiếu vuông góc của A trên cạnh BC. Chứng minh rằng : .
4) Chứng minh : .

Đề số 6
(Đề thi năm học 2001 – 2002)

Câu I (3,5đ)
Giải các phương trình sau:
1) x2 – 9 = 0
2) x2 + x – 20 = 0
3) x2 – 2x – 6 = 0.
Câu II (2,5đ)
Cho hai điểm A(1 ; 1), B(2 ; -1).
1) Viết phương trình đường thẳng AB.
2) Tìm các giá trị của m để đường thẳng y = (m2 – 3m)x + m2 – 2m + 2 song song với đường
thẳng AB đồng thời đi qua điểm C(0 ; 2).
Câu III (3đ)
Cho tam giác ABC nhọn, đường cao kẻ từ đỉnh B và đỉnh C cắt nhau tại H và cắt đường tròn ngoại
tiếp tam giác ABC lần lượt tại E và F.
1) Chứng minh AE = AF.
2) Chứng minh A là tâm đường tròn ngoại tiếp tam giác EFH.
3) Kẻ đường kính BD, chứng minh tứ giác ADCH là hình bình hành.
Câu IV (1đ)
Tìm các cặp số nguyên (x, y) thoả mãn phương trình: .





Đề số 7
(Đề thi năm học 2001 – 2002)
Câu I (3,5đ)
Giải các phương trình sau :
1) 2(x – 1) – 3 = 5x + 4
2) 3x – x2 = 0
3) .
Câu II (2,5đ)
Cho hàm số y = -2x2 có đồ thị là (P).
1) Các điểm A(2 ; -8), B(-3 ; 18), C( ; -4) có thuộc (P) không ?
2) Xác định các giá trị của m để điểm D có toạ độ (m; m – 3) thuộc đồ thị (P).
Câu III (3đ)
Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn đường kính AH cắt cạnh AB tại M và
cắt cạnh AC tại N.
1) Chứng minh rằng MN là đường kính của đường tròn đường kính AH.
2) Chứng minh tứ giác
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Võ Thạch Sơn
Dung lượng: 50,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)