đề tuyển sinhlop 10 môn toán các tỉn 11-12

Chia sẻ bởi Nguyễn Ngọc Lâm | Ngày 16/10/2018 | 53

Chia sẻ tài liệu: đề tuyển sinhlop 10 môn toán các tỉn 11-12 thuộc Địa lí 6

Nội dung tài liệu:


SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2011 – 2012
ĐỀ CHÍNH THỨC MÔN: TOÁN
Thời gian làm bài: 120 phút

Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a) 
b) 
c) 
d) 

Bài 2: (1,5 điểm)
a) Vẽ đồ thị (P) của hàm số  và đường thẳng (D):  trên cùng một hệ trục toạ độ.
b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Bài 3: (1,5 điểm)
Thu gọn các biểu thức sau:

 

Bài 4: (1,5 điểm)
Cho phương trình  (x là ẩn số)
Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
Gọi x1, x2 là các nghiệm của phương trình.
Tìm m để biểu thức A = . đạt giá trị nhỏ nhất

Bài 5: (3,5 điểm)
Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).
Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân
Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.
Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID
BÀI GIẢI

Bài 1: (2 điểm)

Giải các phương trình và hệ phương trình sau:
a)  (a)
Vì phương trình (a) có a + b + c = 0 nên
(a) 
b)  (
(  ( 
c) x4 + 5x2 – 36 = 0 (C)
Đặt u = x2 ( 0, phương trình thành : u2 + 5u – 36 = 0 (*)
(*) có ( = 169, nên (*) (  hay  (loại)
Do đó, (C) ( x2 = 4 ( x = (2
Cách khác : (C) ( (x2 – 4)(x2 + 9) = 0 ( x2 = 4 ( x = (2
d)  (d)
(d) có : a + b + c = 0 nên (d) ( x = 1 hay 

Bài 2:
a) Đồ thị:












Lưu ý: (P) đi qua O(0;0), 
(D) đi qua 
b) PT hoành độ giao điểm của (P) và (D) là
 ( x2 – 2x – 3 = 0  (Vì a – b + c = 0)
y(-1) = -1, y(3) = -9
Vậy toạ độ giao điểm của (P) và (D) là .

Bài 3:
Thu gọn các biểu thức sau:

= 
=  = 
= = 
=  = 

 
= 
= 
=  = 
=  = 

Bài 4:
a/ Phương trình (1) có ∆’ = m2 + 4m +5 = (m+2)2 +1 > 0 với mọi m nên phương trình (1) có 2 nghiệm phân biệt với mọi m.
b/ Do đó, theo Viet, với mọi m, ta có: S = ; P = 
A = = =với mọi m.
Và A = 6 khi m = 
Vậy A đạt giá trị nhỏ nhất là 6 khi m = 
Bài 5: a) Tứ giác AEHF là hình chữ nhật vì có 3 góc vuông
Góc HAF = góc EFA (vì AEHF là hình chữ nhật)
Góc OAC = góc OCA (vì OA = OC)
Do đó: góc OAC + góc AFE = 900 ( OA vuông góc với EF

b) OA vuông góc PQ ( cung PA = cung AQ
Do đó:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Ngọc Lâm
Dung lượng: 151,00KB| Lượt tài: 5
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)