Đề Toán vào 10 chuyên tp HCM 08-09

Chia sẻ bởi Ngô Tùng Toại | Ngày 13/10/2018 | 39

Chia sẻ tài liệu: Đề Toán vào 10 chuyên tp HCM 08-09 thuộc Đại số 9

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10
THÀNH PHỐ HỒ CHÍ MINH TRUNG HỌC PHỔ THÔNG CHUYÊN
NĂM HỌC 2008-2009
KHÓA NGÀY 18-06-2008
ĐỀ CHÍNH THỨC Môn thi: TOÁN
Thời gian làm bài: 150 phút
(không kể thời gian giao đề)

Câu 1 (4 điểm):
a) Tìm m để phương trình x2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x1, x2 thoả |x1 – x2| = 17.
b) Tìm m để hệ bất phương trình  có một nghiệm duy nhất.

Câu 2(4 điểm): Thu gọn các biểu thức sau:
a) S =  (a, b, c khác nhau đôi một)
b) P =  (x ≥ 2)

Câu 3(2 điểm): Cho a, b, c, d là các số nguyên thỏa a ≤ b ≤ c ≤ d và a + d = b + c.
Chứng minh rằng:
a) a2 + b2 + c2 + d2 là tổng của ba số chính phương.
b) bc ≥ ad.

Câu 4 (2 điểm):
a) Cho a, b là hai số thực thoả 5a + b = 22. Biết phương trình x2 + ax + b = 0 có hai nghiệm là hai số nguyên dương. Hãy tìm hai nghiệm đó.
b) Cho hai số thực sao cho x + y, x2 + y2, x4 + y4 là các số nguyên. Chứng minh x3 + y3 cũng là các số nguyên.

Câu 5 (3 điểm): Cho đường tròn (O) đường kính AB. Từ một điểm C thuộc đường tròn (O) kẻ CH vuông góc với AB (C khác A và B; H thuộc AB). Đường tròn tâm C bán kính CH cắt đường tròn (O) tại D và E. Chứng minh DE đi qua trung điểm của CH.

Câu 6 (3 điểm): Cho tam giác ABC đều có cạnh bằng 1. Trên cạnh AC lấy các điểm D, E sao cho ( ABD = ( CBE = 200. Gọi M là trung điểm của BE và N là điểm trên cạnh BC sao BN = BM. Tính tổng diện tích hai tam giác BCE và tam giác BEN.

Câu 7 (2 điểm): Cho a, b là hai số thực sao cho a3 + b3 = 2. Chứng minh 0 < a + b ≤ 2.

-----oOo-----

Gợi ý giải đề thi môn toán chuyên
Câu 1:

a) ( = (4m + 1)2 – 8(m – 4) = 16m2 + 33 > 0 với mọi m nên phương trình luôn có hai nghiệm phân biệt x1, x2.
Ta có: S = –4m – 1 và P = 2m – 8.
Do đó: |x1 –x2| = 17 ( (x1 – x2)2 = 289 ( S2 – 4P = 289
( (–4m – 1)2 – 4(2m – 8) = 289 ( 16m2 + 33 = 289
( 16m2 = 256 ( m2 = 16 ( m = ( 4.
Vậy m thoả YCBT ( m = ( 4.
b)  .
Ta có: (a) ( x ≥ .
Xét (b): * m > 0: (b) ( x ≥ .
* m = 0: (b) ( 0x ≥ 1 (VN)
* m < 0: (b) ( x ≤ .
Vậy hệ có nghiệm duy nhất (  (  ( m = –1.

Câu 2:
a) S =  (a, b, c khác nhau đôi một)
=  =  = 0.
b) P =  (x ≥ 2)
= 
= 
= 
=  (vì x ≥ 2 nên  và  ≥ 1)
= .

Câu 3: Cho a, b, c, d là các số nguyên thoả a ≤ b ≤ c ≤ d và a + d = b + c.
a) Vì a ≤ b ≤ c ≤ d nên ta có thể đặt a = b – k và d = c + h (h, k ( N)
Khi đó do a + d = b + c ( b + c + h – k = b + c ( h = k.
Vậy a = b – k và d = c + k.
Do đó: a2 + b2 + c2 + d2 = (b – k)2 + b2 + c2 + (c + k)2
= 2b2 + 2c2 + 2k2 – 2bk + 2ck
= b2 + 2bc + c2 + b2 + c2 + k2 – 2bc – 2bk + 2ck + k2
= (b + c
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Ngô Tùng Toại
Dung lượng: 96,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)